Farhan Goher, Faiza Shafique Khan, Shengren Sun, Qinnan Wang
{"title":"钙依赖性蛋白激酶(CDPK/CPK)介导的水杨酸级联:植物在病原体攻击下的关键武器库。","authors":"Farhan Goher, Faiza Shafique Khan, Shengren Sun, Qinnan Wang","doi":"10.1080/07388551.2025.2498463","DOIUrl":null,"url":null,"abstract":"<p><p>Upon pathogen attack, cytosolic Ca<sup>2+</sup> levels increase in plant cells. The first innate immune response is activated by detecting microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) and is called PAMPs-triggered immunity (PTI). The second immune response is triggered by recognizing pathogens' effector proteins named effectors-triggered immunity (ETI). Calcium-dependent protein kinases (CDPKs or CPKs) are well-known calcium sensors that have a mediator role both in PTI and ETI. Calcium can bind to the elongation factor (EF)-hand domain at the C-terminus of CDPKs, which then phosphorylates substrates at the N-terminal catalytic kinase domain to transfer calcium signals directly. Improving the stress resilience of crops is a critical strategy in attaining global food security. In plants, when a stimulus is seen, there is an increase in Ca<sup>2+</sup> concentration, which activates CDPKs which are in charge of sending out the immunological signals needed for disease tolerance. During the immune response, CDPKs are subject to numerous levels of regulation, including Ca<sup>2+</sup> dependency to decipher various Ca<sup>2+</sup> signals. Furthermore, salicylic acid (SA) regulation by CDPKs provides a comprehensive overview of CDPKs-mediated SA signaling during immune response in plants under pathogen attack. The critical part of CDPKs in SA biosynthesis, from the regulation of SA biosynthesis to how NPR1 perceives SA upon biotic stress, is comprehensively reviewed in this paper with the latest advancements in research. However, more research about CDPKs-mediated SA signaling under pathogen attack is mandatory to further dissect their co-role in crop protection against various diseases to achieve sustainable production goals in the future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium-dependent protein kinase (CDPK/CPK)-mediated salicylic acid cascade: the key arsenal of plants under pathogens attack.\",\"authors\":\"Farhan Goher, Faiza Shafique Khan, Shengren Sun, Qinnan Wang\",\"doi\":\"10.1080/07388551.2025.2498463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Upon pathogen attack, cytosolic Ca<sup>2+</sup> levels increase in plant cells. The first innate immune response is activated by detecting microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) and is called PAMPs-triggered immunity (PTI). The second immune response is triggered by recognizing pathogens' effector proteins named effectors-triggered immunity (ETI). Calcium-dependent protein kinases (CDPKs or CPKs) are well-known calcium sensors that have a mediator role both in PTI and ETI. Calcium can bind to the elongation factor (EF)-hand domain at the C-terminus of CDPKs, which then phosphorylates substrates at the N-terminal catalytic kinase domain to transfer calcium signals directly. Improving the stress resilience of crops is a critical strategy in attaining global food security. In plants, when a stimulus is seen, there is an increase in Ca<sup>2+</sup> concentration, which activates CDPKs which are in charge of sending out the immunological signals needed for disease tolerance. During the immune response, CDPKs are subject to numerous levels of regulation, including Ca<sup>2+</sup> dependency to decipher various Ca<sup>2+</sup> signals. Furthermore, salicylic acid (SA) regulation by CDPKs provides a comprehensive overview of CDPKs-mediated SA signaling during immune response in plants under pathogen attack. The critical part of CDPKs in SA biosynthesis, from the regulation of SA biosynthesis to how NPR1 perceives SA upon biotic stress, is comprehensively reviewed in this paper with the latest advancements in research. However, more research about CDPKs-mediated SA signaling under pathogen attack is mandatory to further dissect their co-role in crop protection against various diseases to achieve sustainable production goals in the future.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2025.2498463\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2498463","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Calcium-dependent protein kinase (CDPK/CPK)-mediated salicylic acid cascade: the key arsenal of plants under pathogens attack.
Upon pathogen attack, cytosolic Ca2+ levels increase in plant cells. The first innate immune response is activated by detecting microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) and is called PAMPs-triggered immunity (PTI). The second immune response is triggered by recognizing pathogens' effector proteins named effectors-triggered immunity (ETI). Calcium-dependent protein kinases (CDPKs or CPKs) are well-known calcium sensors that have a mediator role both in PTI and ETI. Calcium can bind to the elongation factor (EF)-hand domain at the C-terminus of CDPKs, which then phosphorylates substrates at the N-terminal catalytic kinase domain to transfer calcium signals directly. Improving the stress resilience of crops is a critical strategy in attaining global food security. In plants, when a stimulus is seen, there is an increase in Ca2+ concentration, which activates CDPKs which are in charge of sending out the immunological signals needed for disease tolerance. During the immune response, CDPKs are subject to numerous levels of regulation, including Ca2+ dependency to decipher various Ca2+ signals. Furthermore, salicylic acid (SA) regulation by CDPKs provides a comprehensive overview of CDPKs-mediated SA signaling during immune response in plants under pathogen attack. The critical part of CDPKs in SA biosynthesis, from the regulation of SA biosynthesis to how NPR1 perceives SA upon biotic stress, is comprehensively reviewed in this paper with the latest advancements in research. However, more research about CDPKs-mediated SA signaling under pathogen attack is mandatory to further dissect their co-role in crop protection against various diseases to achieve sustainable production goals in the future.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.