Upcoming generation nanoengineered antimicrobial delivery system for targeting multidrug-resistant microbes.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Aditya Upadhyay, Dharm Pal, Awanish Kumar
{"title":"Upcoming generation nanoengineered antimicrobial delivery system for targeting multidrug-resistant microbes.","authors":"Aditya Upadhyay, Dharm Pal, Awanish Kumar","doi":"10.1080/07388551.2025.2506611","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of chronic and acute infections has increased reliance on antimicrobial agents. However, conventional antimicrobials often fail to deliver optimal therapeutic outcomes due to limitations such as low bioavailability, poor biocompatibility, nonspecific targeting, drug-induced toxicity, and the growing issue of antimicrobial resistance. Therefore, the concept of a resistance-proof antimicrobial agent (RPAA) and its smart delivery was introduced to overcome the existing problem and a targeted delivery due to the specific properties, such as: high bioavailability, biocompatibility, low drug-induced toxicity, biodegradability, high binding capacity with the pathogen, multiple targeting delivery, etc. This system generates a positive impact and could quash the multidrug resistance problem. In this review, we discuss: the rationale for developing a nanoengineering-based smart-delivery system for RPAA, the advantageous properties of such a system, the possible mechanism of delivery, and challenges in the development of a nano-drug delivery therapeutics tool for RPAA delivery as a solution to combat the global problem of drug resistance. We emphasize the urgent need for the development of such a next-generation drug delivery system and discuss the opportunities/hurdles as well as the questions that remain to be addressed. The article is important because it sheds light on the properties of nanoengineered drug delivery that could initiate new ways of thinking about the development of future-generation delivery systems. The article shares a promising idea that would be an essential foundation for opening a new window in the field of drug discovery and development of the smart delivery system for RPAA.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2506611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of chronic and acute infections has increased reliance on antimicrobial agents. However, conventional antimicrobials often fail to deliver optimal therapeutic outcomes due to limitations such as low bioavailability, poor biocompatibility, nonspecific targeting, drug-induced toxicity, and the growing issue of antimicrobial resistance. Therefore, the concept of a resistance-proof antimicrobial agent (RPAA) and its smart delivery was introduced to overcome the existing problem and a targeted delivery due to the specific properties, such as: high bioavailability, biocompatibility, low drug-induced toxicity, biodegradability, high binding capacity with the pathogen, multiple targeting delivery, etc. This system generates a positive impact and could quash the multidrug resistance problem. In this review, we discuss: the rationale for developing a nanoengineering-based smart-delivery system for RPAA, the advantageous properties of such a system, the possible mechanism of delivery, and challenges in the development of a nano-drug delivery therapeutics tool for RPAA delivery as a solution to combat the global problem of drug resistance. We emphasize the urgent need for the development of such a next-generation drug delivery system and discuss the opportunities/hurdles as well as the questions that remain to be addressed. The article is important because it sheds light on the properties of nanoengineered drug delivery that could initiate new ways of thinking about the development of future-generation delivery systems. The article shares a promising idea that would be an essential foundation for opening a new window in the field of drug discovery and development of the smart delivery system for RPAA.

针对多药耐药微生物的新一代纳米工程抗菌药物递送系统。
慢性和急性感染的增加增加了对抗菌药物的依赖。然而,由于生物利用度低、生物相容性差、非特异性靶向、药物诱导毒性以及日益严重的抗菌素耐药性问题等限制,传统抗菌素往往不能提供最佳的治疗效果。因此,为了克服抗药抗菌剂(RPAA)的生物利用度高、生物相容性好、药物诱导毒性低、生物可降解性强、与病原体结合能力强、多靶向递送等特性所带来的靶向递送问题,提出了抗药抗菌剂及其智能递送的概念。这个系统产生了积极的影响,可以消除多药耐药问题。在本文中,我们讨论了开发基于纳米工程的RPAA智能递送系统的基本原理,该系统的优势特性,可能的递送机制,以及开发用于RPAA递送的纳米药物递送治疗工具以解决全球耐药性问题所面临的挑战。我们强调开发下一代给药系统的迫切需要,并讨论了机遇/障碍以及有待解决的问题。这篇文章很重要,因为它揭示了纳米工程药物传递的特性,这可能会开启思考下一代传递系统发展的新方法。本文提出了一个有希望的思路,为打开RPAA智能给药系统在药物发现和开发领域的新窗口奠定了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信