Zhipeng Li, Li You, Xiping Du, Haoyi Yang, Liang Yang, Yanbing Zhu, Lijun Li, Zedong Jiang, Qingbiao Li, Ning He, Rui Lin, Zhen Chen, Hui Ni
{"title":"深入研究 Phaffia rhodozyma 虾青素生物合成代谢机制的新策略。","authors":"Zhipeng Li, Li You, Xiping Du, Haoyi Yang, Liang Yang, Yanbing Zhu, Lijun Li, Zedong Jiang, Qingbiao Li, Ning He, Rui Lin, Zhen Chen, Hui Ni","doi":"10.1080/07388551.2024.2344578","DOIUrl":null,"url":null,"abstract":"<p><p>Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using <i>Phaffia rhodozyma</i>. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in <i>P. rhodozyma</i>, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as <i>crtYB</i>, <i>crtS</i>, and <i>crtI</i>, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in <i>P. rhodozyma</i> and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in <i>Phaffia rhodozyma</i>.\",\"authors\":\"Zhipeng Li, Li You, Xiping Du, Haoyi Yang, Liang Yang, Yanbing Zhu, Lijun Li, Zedong Jiang, Qingbiao Li, Ning He, Rui Lin, Zhen Chen, Hui Ni\",\"doi\":\"10.1080/07388551.2024.2344578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using <i>Phaffia rhodozyma</i>. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in <i>P. rhodozyma</i>, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as <i>crtYB</i>, <i>crtS</i>, and <i>crtI</i>, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in <i>P. rhodozyma</i> and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2024.2344578\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2344578","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma.
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.