Comprehensive Physiology最新文献

筛选
英文 中文
Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. 危重疾病急性肾损伤的病理生理学:述评。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-09-08 DOI: 10.1002/cphy.c210028
Luis A Juncos, Patrick M Wieruszewski, Kianoush Kashani
{"title":"Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review.","authors":"Luis A Juncos,&nbsp;Patrick M Wieruszewski,&nbsp;Kianoush Kashani","doi":"10.1002/cphy.c210028","DOIUrl":"https://doi.org/10.1002/cphy.c210028","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3767-3780"},"PeriodicalIF":5.8,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. 羟色胺与肺动脉高压;性与药物以及 ROCK 与 Rho。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-29 DOI: 10.1002/cphy.c220004
Margaret R MacLean, Barry Fanburg, Nicolas Hill, Howard M Lazarus, Thomas F Pack, Michelle Palacios, Krishna C Penumatsa, Stephen A Wring
{"title":"Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho.","authors":"Margaret R MacLean, Barry Fanburg, Nicolas Hill, Howard M Lazarus, Thomas F Pack, Michelle Palacios, Krishna C Penumatsa, Stephen A Wring","doi":"10.1002/cphy.c220004","DOIUrl":"10.1002/cphy.c220004","url":null,"abstract":"<p><p>Serotonin is often referred to as a \"happy hormone\" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The \"serotonin hypothesis of pulmonary hypertension\" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4103-4118"},"PeriodicalIF":5.8,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Glycocalyx. 内皮Glycocalyx。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-23 DOI: 10.1002/cphy.c210029
Christopher A Foote, Rogerio N Soares, Francisco I Ramirez-Perez, Thaysa Ghiarone, Annayya Aroor, Camila Manrique-Acevedo, Jaume Padilla, Luis Martinez-Lemus
{"title":"Endothelial Glycocalyx.","authors":"Christopher A Foote,&nbsp;Rogerio N Soares,&nbsp;Francisco I Ramirez-Perez,&nbsp;Thaysa Ghiarone,&nbsp;Annayya Aroor,&nbsp;Camila Manrique-Acevedo,&nbsp;Jaume Padilla,&nbsp;Luis Martinez-Lemus","doi":"10.1002/cphy.c210029","DOIUrl":"https://doi.org/10.1002/cphy.c210029","url":null,"abstract":"<p><p>The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3781-3811"},"PeriodicalIF":5.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214841/pdf/nihms-1893394.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Control of Breathing in Ectothermic Vertebrates. 恒温脊椎动物的呼吸控制。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-23 DOI: 10.1002/cphy.c210041
William K Milsom, Kathleen M Gilmour, Steve Perry, Luciane H Gargaglioni, Michael S Hedrick, Richard Kinkead, Tobias Wang
{"title":"Control of Breathing in Ectothermic Vertebrates.","authors":"William K Milsom,&nbsp;Kathleen M Gilmour,&nbsp;Steve Perry,&nbsp;Luciane H Gargaglioni,&nbsp;Michael S Hedrick,&nbsp;Richard Kinkead,&nbsp;Tobias Wang","doi":"10.1002/cphy.c210041","DOIUrl":"https://doi.org/10.1002/cphy.c210041","url":null,"abstract":"<p><p>The ectothermic vertebrates are a diverse group that includes the Fishes (Agnatha, Chondrichthyes, and Osteichthyes), and the stem Tetrapods (Amphibians and Reptiles). From an evolutionary perspective, it is within this group that we see the origin of air-breathing and the transition from the use of water to air as a respiratory medium. This is accompanied by a switch from gills to lungs as the major respiratory organ and from oxygen to carbon dioxide as the primary respiratory stimulant. This transition first required the evolution of bimodal breathing (gas exchange with both water and air), the differential regulation of O<sub>2</sub> and CO<sub>2</sub> at multiple sites, periodic or intermittent ventilation, and unsteady states with wide oscillations in arterial blood gases. It also required changes in respiratory pump muscles (from buccopharyngeal muscles innervated by cranial nerves to axial muscles innervated by spinal nerves). The question of the extent to which common mechanisms of respiratory control accompany this progression is an intriguing one. While the ventilatory control systems seen in all extant vertebrates have been derived from common ancestors, the trends seen in respiratory control in the living members of each vertebrate class reflect both shared-derived features (ancestral traits) as well as unique specializations. In this overview article, we provide a comprehensive survey of the diversity that is seen in the afferent inputs (chemo and mechanoreceptor), the central respiratory rhythm generators, and the efferent outputs (drive to the respiratory pumps and valves) in this group. © 2022 American Physiological Society. Compr Physiol 12: 1-120, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3869-3988"},"PeriodicalIF":5.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Respiratory Tract Deposition of E-Cigarette Particles. 电子烟微粒的呼吸道沉积。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-12 DOI: 10.1002/cphy.c210038
William D Bennett, Phillip W Clapp, Landon T Holbrook, Kirby L Zeman
{"title":"Respiratory Tract Deposition of E-Cigarette Particles.","authors":"William D Bennett,&nbsp;Phillip W Clapp,&nbsp;Landon T Holbrook,&nbsp;Kirby L Zeman","doi":"10.1002/cphy.c210038","DOIUrl":"https://doi.org/10.1002/cphy.c210038","url":null,"abstract":"<p><p>Total and regional deposition of inhaled electronic cigarette (E-cig) particles in the respiratory tract (RT) depends on both physical properties of the inhaled particles and biological factors of users, for example, breathing pattern or puff profile, airway anatomy, and regional ventilation. Accurate particle sizing of E-cig aerosols is essential for predicting particle deposition in the RT. Studies using a variety of sizing methods have shown mass median aerodynamic diameters ranging from 0.2 to 1.2 um and secondary count diameters in the ultrafine range (<0.1 μm). Incorporating these particle sizes into a multiple-path particle dosimetry (MPPD) model shows 10% to 45% total lung deposition by mass and 30% to 80% for ultrafine particles depending on the breathing patterns. These predictions are consistent with experimental measures of deposition fraction of submicron and ultrafine particles. While box-mod-type E-cig devices allow for full \"direct-lung\" inhalations of aerosol, the more recent pod-based, and disposable E-cigs (e.g., JUUL, Puff Bar, Stig) deliver the aerosol as a \"mouth-to-lung\" puff, or bolus, that is inhaled early in the breath followed to various degrees by further inhalation of ambient air. Measurement of realistic ventilation patterns associated with these various devices may further improve deposition predictions. Finally, while in vivo measures of RT deposition present a challenge, a recent methodology to radiolabel E-cig particles may allow for such measurements by gamma scintigraphy. Supported by NIH/NHLBI R01HL139369. © 2022 American Physiological Society. Compr Physiol 12: 1-10, year.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3823-3832"},"PeriodicalIF":5.8,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cell-To-Cell Communication in the Resistance Vasculature. 抵抗血管系统中的细胞间通讯。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-12 DOI: 10.1002/cphy.c210040
D Ryan King, Meghan W Sedovy, Xinyan Eaton, Luke S Dunaway, Miranda E Good, Brant E Isakson, Scott R Johnstone
{"title":"Cell-To-Cell Communication in the Resistance Vasculature.","authors":"D Ryan King,&nbsp;Meghan W Sedovy,&nbsp;Xinyan Eaton,&nbsp;Luke S Dunaway,&nbsp;Miranda E Good,&nbsp;Brant E Isakson,&nbsp;Scott R Johnstone","doi":"10.1002/cphy.c210040","DOIUrl":"https://doi.org/10.1002/cphy.c210040","url":null,"abstract":"<p><p>The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3833-3867"},"PeriodicalIF":5.8,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Strenuous Endurance Exercise and the Heart: Physiological versus Pathological Adaptations. 剧烈耐力运动与心脏:生理与病理适应。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-11 DOI: 10.1002/cphy.c210045
Pedro L Valenzuela, Aaron Baggish, Adrián Castillo-García, Alejandro Santos-Lozano, Araceli Boraita, Alejandro Lucia
{"title":"Strenuous Endurance Exercise and the Heart: Physiological versus Pathological Adaptations.","authors":"Pedro L Valenzuela,&nbsp;Aaron Baggish,&nbsp;Adrián Castillo-García,&nbsp;Alejandro Santos-Lozano,&nbsp;Araceli Boraita,&nbsp;Alejandro Lucia","doi":"10.1002/cphy.c210045","DOIUrl":"https://doi.org/10.1002/cphy.c210045","url":null,"abstract":"<p><p>Although the benefits of regular physical activity on cardiovascular health are well established, the effects of strenuous endurance exercise (SEE) have been a matter of debate since ancient times. In this article, we aim to provide a balanced overview of what is known about SEE and the heart-from epidemiological evidence to recent cardiac imaging findings. Lifelong SEE is overall cardioprotective, with endurance master athletes showing in fact a youthful heart. Yet, some lines of research remain open, such as the need to elucidate the time-course and potential relevance of transient declines in heart function (or increases in biomarkers of cardiac injury) with SEE. The underlying mechanisms and clinical relevance of SEE-associated atrial fibrillation, myocardial fibrosis, or high coronary artery calcium scores also remain to be elucidated. © 2022 American Physiological Society. Compr Physiol 12:1-19, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4067-4085"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Connexin-Based Channels in the Liver. 肝脏中基于连接蛋白的通道。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-11 DOI: 10.1002/cphy.c220007
Raf Van Campenhout, Kaat Leroy, Axelle Cooreman, Andrés Tabernilla, Bruno Cogliati, Prashant Kadam, Mathieu Vinken
{"title":"Connexin-Based Channels in the Liver.","authors":"Raf Van Campenhout,&nbsp;Kaat Leroy,&nbsp;Axelle Cooreman,&nbsp;Andrés Tabernilla,&nbsp;Bruno Cogliati,&nbsp;Prashant Kadam,&nbsp;Mathieu Vinken","doi":"10.1002/cphy.c220007","DOIUrl":"https://doi.org/10.1002/cphy.c220007","url":null,"abstract":"<p><p>Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4147-4163"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pancreatic Islets as a Target of Adipokines. 胰岛作为脂肪因子的靶点。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-11 DOI: 10.1002/cphy.c210044
Moritz Reiterer, Ankit Gilani, James C Lo
{"title":"Pancreatic Islets as a Target of Adipokines.","authors":"Moritz Reiterer,&nbsp;Ankit Gilani,&nbsp;James C Lo","doi":"10.1002/cphy.c210044","DOIUrl":"https://doi.org/10.1002/cphy.c210044","url":null,"abstract":"<p><p>Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 3","pages":"4039-4065"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10216410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging. B淋巴细胞亚群在脂肪组织发育、代谢和衰老中的作用。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-08-11 DOI: 10.1002/cphy.c220006
Nicole C Fernandez, Kosaku Shinoda
{"title":"The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging.","authors":"Nicole C Fernandez, Kosaku Shinoda","doi":"10.1002/cphy.c220006","DOIUrl":"10.1002/cphy.c220006","url":null,"abstract":"<p><p>Adipose tissue contains resident B lymphocytes (B cells) with varying immune functions and mechanisms, depending on the adipose depot type and location. The heterogeneity of B cells and their functions affect the immunometabolism of the adipose tissue in aging and age-associated metabolic disorders. B cells exist in categorizations of subsets that have developmental or phenotypic differences with varying functionalities. Subsets can be categorized as either protective or pathogenic depending on their secretion profile or involvement in metabolic maintenance. In this article, we summarized recent finding on the B cell heterogeneity and discuss how we can utilize our current knowledge of adipose resident B lymphocytes for potential treatment for age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 1-13, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4133-4145"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10197905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信