Comprehensive Physiology最新文献

筛选
英文 中文
Control of Mammalian Locomotion by Somatosensory Feedback. 通过体感反馈控制哺乳动物的运动
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210020
Alain Frigon, Turgay Akay, Boris I Prilutsky
{"title":"Control of Mammalian Locomotion by Somatosensory Feedback.","authors":"Alain Frigon, Turgay Akay, Boris I Prilutsky","doi":"10.1002/cphy.c210020","DOIUrl":"10.1002/cphy.c210020","url":null,"abstract":"<p><p>When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159344/pdf/nihms-1806705.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10245448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. 草酸通量通过肠道:膜转运蛋白的贡献。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210013
Jonathan M Whittamore, Marguerite Hatch
{"title":"Oxalate Flux Across the Intestine: Contributions from Membrane Transporters.","authors":"Jonathan M Whittamore,&nbsp;Marguerite Hatch","doi":"10.1002/cphy.c210013","DOIUrl":"https://doi.org/10.1002/cphy.c210013","url":null,"abstract":"<p><p>Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sympathetic Neural Control in Humans with Anxiety-Related Disorders. 焦虑相关障碍患者的交感神经控制。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210027
Jeremy A Bigalke, Jason R Carter
{"title":"Sympathetic Neural Control in Humans with Anxiety-Related Disorders.","authors":"Jeremy A Bigalke,&nbsp;Jason R Carter","doi":"10.1002/cphy.c210027","DOIUrl":"https://doi.org/10.1002/cphy.c210027","url":null,"abstract":"<p><p>Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9841978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. 亨利氏袢的解剖生理学:着重于粗大的上升肢。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210021
Andrée-Anne Marcoux, Laurence E Tremblay, Samira Slimani, Marie-Jeanne Fiola, Fabrice Mac-Way, Ludwig Haydock, Alexandre P Garneau, Paul Isenring
{"title":"Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb.","authors":"Andrée-Anne Marcoux,&nbsp;Laurence E Tremblay,&nbsp;Samira Slimani,&nbsp;Marie-Jeanne Fiola,&nbsp;Fabrice Mac-Way,&nbsp;Ludwig Haydock,&nbsp;Alexandre P Garneau,&nbsp;Paul Isenring","doi":"10.1002/cphy.c210021","DOIUrl":"https://doi.org/10.1002/cphy.c210021","url":null,"abstract":"<p><p>The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca<sup>2+</sup> , Mg<sup>2+</sup> , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Renal Tubular Handling of Glucose and Fructose in Health and Disease. 健康和疾病中肾小管对葡萄糖和果糖的处理。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210030
Volker Vallon, Takahiko Nakagawa
{"title":"Renal Tubular Handling of Glucose and Fructose in Health and Disease.","authors":"Volker Vallon, Takahiko Nakagawa","doi":"10.1002/cphy.c210030","DOIUrl":"10.1002/cphy.c210030","url":null,"abstract":"<p><p>The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832976/pdf/nihms-1859851.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9836498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease. 胆汁酸,肠道微生物群和脂肪肝的道路。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210024
Phillip B Hylemon, Lianyong Su, Po-Cheng Zheng, Jasmohan S Bajaj, Huiping Zhou
{"title":"Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease.","authors":"Phillip B Hylemon,&nbsp;Lianyong Su,&nbsp;Po-Cheng Zheng,&nbsp;Jasmohan S Bajaj,&nbsp;Huiping Zhou","doi":"10.1002/cphy.c210024","DOIUrl":"https://doi.org/10.1002/cphy.c210024","url":null,"abstract":"<p><p>This article describes the complex interactions occurring between diet, the gut microbiome, and bile acids in the etiology of fatty liver disease. Perhaps 25% of the world's population may have nonalcoholic fatty liver disease (NAFLD) and a significant percentage (∼20%) of these individuals will progress to nonalcoholic steatohepatitis (NASH). Currently, the only recommended treatment for NAFLD and NASH is a change in diet and exercise. A Western-type diet containing high fructose corn syrup, fats, and cholesterol creates gut dysbiosis, increases intestinal permeability and uptake of LPS causing low-grade chronic inflammation in the body. Fructose is a \"lipogenic\" sugar that induces long-chain fatty acid (LCFA) synthesis in the liver. Inflammation decreases the oxidation of LCFA, allowing fat accumulation in hepatocytes. Hepatic bile acid transporters are downregulated by inflammation slowing their enterohepatic circulation and allowing conjugated bile acids (CBA) to increase in the serum and liver of NASH patients. High levels of CBA in the liver are hypothesized to activate sphingosine-1-phosphate receptor 2 (S1PR2), activating pro-inflammatory and fibrosis pathways enhancing NASH progression. Because inflammation appears to be a major physiological driving force in NAFLD/NASH, new drugs and treatment protocols may require the use of anti-inflammatory compounds, such as berberine, in combination with bile acid receptor agonists or antagonists. Emerging new molecular technologies may provide guidance in unraveling the complex physiological pathways driving fatty liver disease and better approaches to prevention and treatment. © 2021 American Physiological Society. Compr Physiol 11:1-12, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197142/pdf/nihms-1852417.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. 连续血流左心室辅助装置治疗的生理学。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210016
Andrew N Rosenbaum, James F Antaki, Atta Behfar, Mauricio A Villavicencio, John Stulak, Sudhir S Kushwaha
{"title":"Physiology of Continuous-Flow Left Ventricular Assist Device Therapy.","authors":"Andrew N Rosenbaum,&nbsp;James F Antaki,&nbsp;Atta Behfar,&nbsp;Mauricio A Villavicencio,&nbsp;John Stulak,&nbsp;Sudhir S Kushwaha","doi":"10.1002/cphy.c210016","DOIUrl":"https://doi.org/10.1002/cphy.c210016","url":null,"abstract":"<p><p>The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. 肥胖、身体成分和性激素:对心血管风险的影响。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210014
Prachi Singh, Naima Covassin, Kara Marlatt, Kishore M Gadde, Steven B Heymsfield
{"title":"Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk.","authors":"Prachi Singh,&nbsp;Naima Covassin,&nbsp;Kara Marlatt,&nbsp;Kishore M Gadde,&nbsp;Steven B Heymsfield","doi":"10.1002/cphy.c210014","DOIUrl":"https://doi.org/10.1002/cphy.c210014","url":null,"abstract":"<p><p>Cardiovascular disease (CVD) continues to be the leading cause of death in adults, highlighting the need to develop novel strategies to mitigate cardiovascular risk. The advancing obesity epidemic is now threatening the gains in CVD risk reduction brought about by contemporary pharmaceutical and surgical interventions. There are sex differences in the development and outcomes of CVD; premenopausal women have significantly lower CVD risk than men of the same age, but women lose this advantage as they transition to menopause, an observation suggesting potential role of sex hormones in determining CVD risk. Clear differences in obesity and regional fat distribution among men and women also exist. While men have relatively high fat in the abdominal area, women tend to distribute a larger proportion of their fat in the lower body. Considering that regional body fat distribution is an important CVD risk factor, differences in how men and women store their body fat may partly contribute to sex-based alterations in CVD risk as well. This article presents findings related to the role of obesity and sex hormones in determining CVD risk. Evidence for the role of sex hormones in determining body composition in men and women is also presented. Lastly, the clinical potential for using sex hormones to alter body composition and reduce CVD risk is outlined. © 2022 American Physiological Society. Compr Physiol 12:1-45, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068688/pdf/nihms-1882873.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9841974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Renal and Cerebral Hypoxia and Inflammation During Cardiopulmonary Bypass. 体外循环期间肾脑缺氧与炎症。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210019
Alemayehu H Jufar, Yugeesh R Lankadeva, Clive N May, Andrew D Cochrane, Bruno Marino, Rinaldo Bellomo, Roger G Evans
{"title":"Renal and Cerebral Hypoxia and Inflammation During Cardiopulmonary Bypass.","authors":"Alemayehu H Jufar,&nbsp;Yugeesh R Lankadeva,&nbsp;Clive N May,&nbsp;Andrew D Cochrane,&nbsp;Bruno Marino,&nbsp;Rinaldo Bellomo,&nbsp;Roger G Evans","doi":"10.1002/cphy.c210019","DOIUrl":"https://doi.org/10.1002/cphy.c210019","url":null,"abstract":"<p><p>Cardiac surgery-associated acute kidney injury and brain injury remain common despite ongoing efforts to improve both the equipment and procedures deployed during cardiopulmonary bypass (CPB). The pathophysiology of injury of the kidney and brain during CPB is not completely understood. Nevertheless, renal (particularly in the medulla) and cerebral hypoxia and inflammation likely play critical roles. Multiple practical factors, including depth and mode of anesthesia, hemodilution, pump flow, and arterial pressure can influence oxygenation of the brain and kidney during CPB. Critically, these factors may have differential effects on these two vital organs. Systemic inflammatory pathways are activated during CPB through activation of the complement system, coagulation pathways, leukocytes, and the release of inflammatory cytokines. Local inflammation in the brain and kidney may be aggravated by ischemia (and thus hypoxia) and reperfusion (and thus oxidative stress) and activation of resident and infiltrating inflammatory cells. Various strategies, including manipulating perfusion conditions and administration of pharmacotherapies, could potentially be deployed to avoid or attenuate hypoxia and inflammation during CPB. Regarding manipulating perfusion conditions, based on experimental and clinical data, increasing standard pump flow and arterial pressure during CPB appears to offer the best hope to avoid hypoxia and injury, at least in the kidney. Pharmacological approaches, including use of anti-inflammatory agents such as dexmedetomidine and erythropoietin, have shown promise in preclinical models but have not been adequately tested in human trials. However, evidence for beneficial effects of corticosteroids on renal and neurological outcomes is lacking. © 2021 American Physiological Society. Compr Physiol 11:1-36, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. 用多指标方法确定代谢综合征的遗传因素。
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c210010
Karen C Clark, Anne E Kwitek
{"title":"Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome.","authors":"Karen C Clark, Anne E Kwitek","doi":"10.1002/cphy.c210010","DOIUrl":"10.1002/cphy.c210010","url":null,"abstract":"<p><p>Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373910/pdf/nihms-1826555.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信