Comprehensive Physiology最新文献

筛选
英文 中文
Physiological Systems in Promoting Frailty. 促进衰弱的生理系统。
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2022-04-26 DOI: 10.1002/cphy.c210034
Laís R Perazza, Holly M Brown-Borg, LaDora V Thompson
{"title":"Physiological Systems in Promoting Frailty.","authors":"Laís R Perazza, Holly M Brown-Borg, LaDora V Thompson","doi":"10.1002/cphy.c210034","DOIUrl":"10.1002/cphy.c210034","url":null,"abstract":"<p><p>Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD<sup>+</sup> ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 3","pages":"3575-3620"},"PeriodicalIF":4.2,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531553/pdf/nihms-1839399.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory-Cardiovascular Interactions During Mechanical Ventilation: Physiology and Clinical Implications. 机械通气期间呼吸-心血管相互作用:生理学和临床意义。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-04-26 DOI: 10.1002/cphy.c210003
John Kreit
{"title":"Respiratory-Cardiovascular Interactions During Mechanical Ventilation: Physiology and Clinical Implications.","authors":"John Kreit","doi":"10.1002/cphy.c210003","DOIUrl":"https://doi.org/10.1002/cphy.c210003","url":null,"abstract":"<p><p>Positive-pressure inspiration and positive end-expiratory pressure (PEEP) increase pleural, alveolar, lung transmural, and intra-abdominal pressure, which decrease right and left ventricular (RV; LV) preload and LV afterload and increase RV afterload. The magnitude and clinical significance of the resulting changes in ventricular function are determined by the delivered tidal volume, the total level of PEEP, the compliance of the lungs and chest wall, intravascular volume, baseline RV and LV function, and intra-abdominal pressure. In mechanically ventilated patients, the most important, adverse consequences of respiratory-cardiovascular interactions are a PEEP-induced reduction in cardiac output, systemic oxygen delivery, and blood pressure; RV dysfunction in patients with ARDS; and acute hemodynamic collapse in patients with pulmonary hypertension. On the other hand, the hemodynamic changes produced by respiratory-cardiovascular interactions can be beneficial when used to assess volume responsiveness in hypotensive patients and by reducing dyspnea and improving hypoxemia in patients with cardiogenic pulmonary edema. Thus, a thorough understanding of the physiological principles underlying respiratory-cardiovascular interactions is essential if critical care practitioners are to anticipate, recognize, manage, and utilize their hemodynamic effects. © 2022 American Physiological Society. Compr Physiol 12:1-24, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 3","pages":"3425-3448"},"PeriodicalIF":5.8,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. 分子模型是补充和加强通道病研究的一种有利方法。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c190047
Michael T Zimmermann
{"title":"Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research.","authors":"Michael T Zimmermann","doi":"10.1002/cphy.c190047","DOIUrl":"https://doi.org/10.1002/cphy.c190047","url":null,"abstract":"<p><p>Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3141-3166"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10191168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. 肝脏疾病病理生理学中的氧化应激和氧化还原信号转导。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c200021
Raja Gopal Reddy Mooli, Dhanunjay Mukhi, Sadeesh K Ramakrishnan
{"title":"Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases.","authors":"Raja Gopal Reddy Mooli, Dhanunjay Mukhi, Sadeesh K Ramakrishnan","doi":"10.1002/cphy.c200021","DOIUrl":"10.1002/cphy.c200021","url":null,"abstract":"<p><p>The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a \"multiple parallel-hit model\" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3167-3192"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074426/pdf/nihms-1880813.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9887959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational and Experimental Analysis of Genetic Variants. 遗传变异的计算与实验分析。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c210012
Jeremy W Prokop, Vladislav Jdanov, Lane Savage, Michele Morris, Neil Lamb, Elizabeth VanSickle, Cynthia L Stenger, Surender Rajasekaran, Caleb P Bupp
{"title":"Computational and Experimental Analysis of Genetic Variants.","authors":"Jeremy W Prokop,&nbsp;Vladislav Jdanov,&nbsp;Lane Savage,&nbsp;Michele Morris,&nbsp;Neil Lamb,&nbsp;Elizabeth VanSickle,&nbsp;Cynthia L Stenger,&nbsp;Surender Rajasekaran,&nbsp;Caleb P Bupp","doi":"10.1002/cphy.c210012","DOIUrl":"https://doi.org/10.1002/cphy.c210012","url":null,"abstract":"<p><p>Genomics has grown exponentially over the last decade. Common variants are associated with physiological changes through statistical strategies such as Genome-Wide Association Studies (GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through extensive filtering tools, including population genomics and trio-based sequencing (parents and probands). However, the genomic associations require follow-up analyses to narrow causal variants, identify genes that are influenced, and to determine the physiological changes. Large quantities of data exist that can be used to connect variants to gene changes, cell types, protein pathways, clinical phenotypes, and animal models that establish physiological genomics. This data combined with bioinformatics including evolutionary analysis, structural insights, and gene regulation can yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry, cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular variant mechanisms. Variant characterizations can be a significant component of educating future professionals at the undergraduate, graduate, or medical training programs through teaching the basic concepts and terminology of genetics while learning independent research hypothesis design. This article goes through the computational and experimental analysis strategies of variant characterization and provides examples of these tools applied in publications. © 2022 American Physiological Society. Compr Physiol 12:3303-3336, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3303-3336"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9887964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. 多囊卵巢综合征和雄激素过量的神经内分泌后果。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c210025
Mauro S B Silva, Rebecca E Campbell
{"title":"Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess.","authors":"Mauro S B Silva,&nbsp;Rebecca E Campbell","doi":"10.1002/cphy.c210025","DOIUrl":"https://doi.org/10.1002/cphy.c210025","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin-releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma-aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347-3369, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3347-3369"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9833238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Cell Networks in Endocrine/Neuroendocrine Gland Function. 内分泌/神经内分泌腺功能中的细胞网络。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c210031
Nathalie C Guérineau, Pauline Campos, Paul R Le Tissier, David J Hodson, Patrice Mollard
{"title":"Cell Networks in Endocrine/Neuroendocrine Gland Function.","authors":"Nathalie C Guérineau,&nbsp;Pauline Campos,&nbsp;Paul R Le Tissier,&nbsp;David J Hodson,&nbsp;Patrice Mollard","doi":"10.1002/cphy.c210031","DOIUrl":"https://doi.org/10.1002/cphy.c210031","url":null,"abstract":"<p><p>Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a \"textbook\" view of endocrine gland organization which has emanated from 20<sup>th</sup> century histological studies on thin 2D tissue sections. However, 21<sup>st</sup> -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3371-3415"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9887965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Effects of Electronic Cigarette Use. 电子烟使用对发育的影响。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2022-03-29 DOI: 10.1002/cphy.c210018
Joseph M Collaco, Sharon A McGrath-Morrow
{"title":"Developmental Effects of Electronic Cigarette Use.","authors":"Joseph M Collaco,&nbsp;Sharon A McGrath-Morrow","doi":"10.1002/cphy.c210018","DOIUrl":"https://doi.org/10.1002/cphy.c210018","url":null,"abstract":"<p><p>Electronic cigarettes have gained widespread acceptance among adolescents and young adults. As a result of this popularity, there are concerns regarding the potential harm of primary, secondhand and thirdhand electronic cigarette exposures on fetal and postnatal development. In vitro studies have shown that constituents in electronic cigarette liquids, including nicotine, flavorings, and carrier agents can alter cellular processes and growth. Additionally, aerosolized electronic cigarette emissions have been shown to disrupt organ development and immune responses in preclinical studies. In clinical studies, an association between electronic cigarette use and frequent respiratory symptoms, greater asthma severity and impaired mucociliary clearance has been demonstrated with adolescent and young adult users of electronic cigarettes having twice the frequency of cough, mucus production, or bronchitis compared to nonusers. Along with the popularity of electronic cigarette use, secondhand electronic cigarette exposure has increased substantially; with almost one-fourth of middle and high school children reporting exposure to secondhand vapors. The health consequences of secondhand electronic cigarette exposure on children and other vulnerable populations are poorly understood but detectable levels of cotinine have been measured in nonusers. Pregnant women and their offspring are another vulnerable group at increased risk for health consequences from electronic cigarette exposure. Nicotine crosses the placenta and can disrupt brain and lung development in preclinical studies. This article will focus on the physiological and health effects associated with primary or secondhand exposure to electronic cigarettes. It is expected that with ongoing availability of electronic cigarettes as well as the accumulation of additional follow-up time for long-term outcomes, the risks associated with exposure will become better clarified. © 2022 American Physiological Society. Compr Physiol 12:3337-3346, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3337-3346"},"PeriodicalIF":5.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9887956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. 关于人类运动分子适应性的知识现状:历史展望与未来方向。
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2022-03-09 DOI: 10.1002/cphy.c200033
Kaleen M Lavin, Paul M Coen, Liliana C Baptista, Margaret B Bell, Devin Drummer, Sara A Harper, Manoel E Lixandrão, Jeremy S McAdam, Samia M O'Bryan, Sofhia Ramos, Lisa M Roberts, Rick B Vega, Bret H Goodpaster, Marcas M Bamman, Thomas W Buford
{"title":"State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions.","authors":"Kaleen M Lavin, Paul M Coen, Liliana C Baptista, Margaret B Bell, Devin Drummer, Sara A Harper, Manoel E Lixandrão, Jeremy S McAdam, Samia M O'Bryan, Sofhia Ramos, Lisa M Roberts, Rick B Vega, Bret H Goodpaster, Marcas M Bamman, Thomas W Buford","doi":"10.1002/cphy.c200033","DOIUrl":"10.1002/cphy.c200033","url":null,"abstract":"<p><p>For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 2","pages":"3193-3279"},"PeriodicalIF":4.2,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186317/pdf/nihms-1806967.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9835934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cardiac Na+ -Ca2+ Exchanger: From Structure to Function. 心脏Na+ -Ca2+交换器:从结构到功能。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2021-12-29 DOI: 10.1002/cphy.c200031
Michela Ottolia, Scott John, Adina Hazan, Joshua I Goldhaber
{"title":"The Cardiac Na<sup>+</sup> -Ca<sup>2+</sup> Exchanger: From Structure to Function.","authors":"Michela Ottolia,&nbsp;Scott John,&nbsp;Adina Hazan,&nbsp;Joshua I Goldhaber","doi":"10.1002/cphy.c200031","DOIUrl":"https://doi.org/10.1002/cphy.c200031","url":null,"abstract":"<p><p>Ca<sup>2+</sup> homeostasis is essential for cell function and survival. As such, the cytosolic Ca<sup>2+</sup> concentration is tightly controlled by a wide number of specialized Ca<sup>2+</sup> handling proteins. One among them is the Na<sup>+</sup> -Ca<sup>2+</sup> exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na<sup>+</sup> to drive Ca<sup>2+</sup> out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca<sup>2+</sup> homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 1","pages":"2681-2717"},"PeriodicalIF":5.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773166/pdf/nihms-1770930.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9836497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信