Naoto Tsubouchi, Momone Yoshizawa, Javzandogole Bud and Yuuki Mochizuki
{"title":"Removal of gaseous Hg0 by Cl-loaded carbonaceous material prepared from rice husk","authors":"Naoto Tsubouchi, Momone Yoshizawa, Javzandogole Bud and Yuuki Mochizuki","doi":"10.1039/D4RE00414K","DOIUrl":"https://doi.org/10.1039/D4RE00414K","url":null,"abstract":"<p >The main objective of this study was to investigate the removal of gaseous Hg<small><sup>0</sup></small> from the residue obtained during the chlorination of rice husk char to recover silica. First, the chlorine content, chlorine form, pore size, and chlorination reaction of the chlorination residue of rice husk char were investigated. Subsequently, the adsorption performance of gaseous Hg<small><sup>0</sup></small> and adsorption form of Hg<small><sup>0</sup></small> were examined. Through the chlorination of rice husk char (RC) at 1000 °C for 10 min, silicon (Si) in the char could be separated and recovered, and carbonaceous material doped with 9.0% Cl could be prepared. The temperature-programmed desorption (TPD) analysis of the char before and after chlorination revealed that the oxygen-containing functional groups on the surface of char were part of the Cl adsorption sites. Additionally, the X-ray photoelectron spectroscopy (XPS) analysis showed that Cl was mainly present in the C–Cl bonds of the chlorination residue (RCC). The effect of temperature on the performance was small in the tested range (40–160 °C). The adsorption performance of the prepared RCC was superior to those of chlorine- and sulfur-loaded carbons, as reported in previous studies. The results of TPD analysis after the adsorption tests indicated that the adsorption form of Hg<small><sup>0</sup></small> was mainly HgCl<small><sub>2</sub></small>.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 158-167"},"PeriodicalIF":3.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nickel foam supported biochar doped Ni–Mo bimetallic oxide for supercapacitor application†","authors":"Zhongxin Jin, Kaijia Hu, Feng Lin, Siqi Liu, Ruining Gu, Wei Zhang, Siyu Liu, Caiying Li, Hongyang Liao, Xinping Cai, Haijun Pang, Chunjing Zhang and Huiyuan Ma","doi":"10.1039/D4RE00471J","DOIUrl":"https://doi.org/10.1039/D4RE00471J","url":null,"abstract":"<p >As novel energy storage devices that have garnered significant attention, supercapacitors offer merits including long cycle life, high power density, ease of fabrication, and rapid charge/discharge rates. The core component of supercapacitors is an electrode material. Carbon materials are the most widely used in supercapacitors. However, their intrinsic charge storage mechanism results in relatively low capacitance performance, which falls short of the requirements for high-performance electrode materials. In this study, rice husks were converted into biochar. The porous biochar produced exhibits characteristics such as a well-developed porous structure, high specific surface area, tunable architecture, and low cost. Polyoxometalates exhibit excellent redox properties and high stability, offering advantages such as acting as electron reservoirs or electron sponges. C-MoO<small><sub>3</sub></small>-NiO<small><sub>2</sub></small>/NF was synthesized on nickel foam (NF) by using polyoxometalate (NH<small><sub>4</sub></small>)<small><sub>4</sub></small>[Ni(<small>II</small>)Mo<small><sub>6</sub></small>O<small><sub>24</sub></small>H<small><sub>6</sub></small>]·5H<small><sub>2</sub></small>O as a precursor, doping with rice husk biochar and utilizing KOH for porosity development. The supercapacitor test results indicate that the C-MoO<small><sub>3</sub></small>-NiO<small><sub>2</sub></small>/NF electrode material exhibits a charge–discharge time reaching 374.4 s and a specific capacitance of 180.77 F g<small><sup>−1</sup></small> at a current density of 1 A g<small><sup>−1</sup></small> in 6 mol L<small><sup>−1</sup></small> KOH solution. After 1000 cycles of charge–discharge testing, the capacitance retention rate was still 75%. This indicates that the electrode material is an excellent supercapacitor material, laying a foundation for the development of novel supercapacitor materials.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 224-236"},"PeriodicalIF":3.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weihao Xu, Xipo Ma, Pengbo Lyu, Zhenren Gao, Chunshuang Yan and Chade Lv
{"title":"Sugar additive with a halogen group enabling a highly reversible and dendrite-free Zn anode†","authors":"Weihao Xu, Xipo Ma, Pengbo Lyu, Zhenren Gao, Chunshuang Yan and Chade Lv","doi":"10.1039/D4RE00366G","DOIUrl":"https://doi.org/10.1039/D4RE00366G","url":null,"abstract":"<p >Aqueous zinc-ion batteries (AZBs) suffer from poor reversibility and limited lifespan due to parasitic side reactions and dendrite growth induced by active water. Although additives are widely used to address these issues by reducing the water content within the Zn-ion solvation sheaths, the strong interaction between the additives and Zn<small><sup>2+</sup></small> causes poor de-solvation kinetics. Here, we propose a strategy that introduces an electron-withdrawing halogen group to reduce the polarity of the sugar additive. Theoretical simulations and experimental results demonstrate that a sucralose additive with optimal polarity can decrease the coordinated active water without hindering the de-solvation kinetics of Zn<small><sup>2+</sup></small>. This effectively regulates the overpotential and inhibits side reactions. Meanwhile, the additive can adsorb onto the surface of the Zn metal to modify the direction of zinc deposition and suppress dendrite growth. As a result, the Zn//Zn symmetric cell with the sucralose electrolyte additive exhibits an outstanding cycling life of 2400 h at a current density of 1 mA cm<small><sup>−2</sup></small>. Moreover, when coupled with the V<small><sub>2</sub></small>O<small><sub>5</sub></small> cathode, the full battery also demonstrates excellent operational stability, achieving 4000 cycles with a retained capacity of 51.84%.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 214-223"},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nutkamaithorn Polsomboon, Thanapha Numpilai, Kulpavee Jitapunkul, Kajornsak Faungnawakij, Metta Chareonpanich, Xingda An, Le He, Günther Rupprechter and Thongthai Witoon
{"title":"CO2 hydrogenation to light olefins over Fe–Co/K–Al2O3 catalysts prepared via microwave calcination†","authors":"Nutkamaithorn Polsomboon, Thanapha Numpilai, Kulpavee Jitapunkul, Kajornsak Faungnawakij, Metta Chareonpanich, Xingda An, Le He, Günther Rupprechter and Thongthai Witoon","doi":"10.1039/D4RE00428K","DOIUrl":"https://doi.org/10.1039/D4RE00428K","url":null,"abstract":"<p >This study evaluates the effects of microwave calcination on Fe–Co/K–Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalysts for CO<small><sub>2</sub></small> hydrogenation to light olefins, comparing microwave-treated samples at various power settings (700 W, 616 W, 511 W and 364 W) with a traditionally calcined counterpart. The lowest power setting results in incomplete precursor decomposition, adversely affecting Fe, K, and Al<small><sub>2</sub></small>O<small><sub>3</sub></small> interactions. At medium power, though decomposition improves, Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> aggregates due to poor dispersion. Medium-high power produces rod-shaped structures with enhanced Fe and K contact, while the highest setting increases Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> particle size and Fe–K species content to 35.4%, still below the 37.9% observed in the traditional catalyst. Significantly, the formation of Fe–C species (Fe<small><sub>5</sub></small>C<small><sub>2</sub></small>) correlates positively with Fe–K interactions, enhancing the olefins to paraffins ratio. Additionally, the role of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> is vital, providing the highest light olefins yield (24.5%) at an optimal Fe–C/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> ratio of 0.34 in the medium-high power sample. Compared to the traditional catalyst, which declines significantly in CO<small><sub>2</sub></small> conversion and olefin yield due to carbonaceous deposits over time, the medium-high power catalyst shows stable performance and reduced coke formation. Moreover, microwave calcination slashes energy consumption by over 99%, underscoring its potential for more sustainable and efficient catalyst preparation.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 3","pages":" 515-533"},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Ma, Liu Yang, Zhenchang Fang, Kaijia Jiang, Xinling Li and Zhen Huang
{"title":"Design and performance evaluation of low-volatility and low-viscosity absorbents for CO2 capture†","authors":"Ning Ma, Liu Yang, Zhenchang Fang, Kaijia Jiang, Xinling Li and Zhen Huang","doi":"10.1039/D4RE00379A","DOIUrl":"https://doi.org/10.1039/D4RE00379A","url":null,"abstract":"<p >Deficiencies such as high viscosity, volatility, and rich phase precipitation limited the engineering application of non-aqueous absorbents. A series of high boiling point solvent screening experiments were conducted to develop an absorption saturated solution with a homogeneous phase at low viscosity (14.71 mPa s) in this study. Further addition of polyamines increased the absorption capacity by 42% (3.55 mol CO<small><sub>2</sub></small> per kg). The <small><sup>13</sup></small>C NMR results indicated that in the DETA/MEA/NMF blended amine system, MEA was involved in the deprotonation process of DETA zwitterions as proton acceptors. Quantum chemical calculations were utilized to compare the energies of each possible single-step reaction, providing insights into the reaction pathways of the blended amine system. The rate constant of the MEA/CO<small><sub>2</sub></small> reaction was found to be 1.98 times that of the DETA/CO<small><sub>2</sub></small> reaction, indicating lower reaction activity, consistent with NMR results. In addition, the results of the analysis of weak interactions revealed that the hydrogen bonds were key factors affecting the viscosity change and precipitation in non-aqueous absorbents, providing a new method for designing novel low-viscosity non-aqueous absorbents. The combination of theoretical analysis and experimental results underscores the potential of the blended amine non-aqueous absorbent as a feasible alternative for the industrial applications of CO<small><sub>2</sub></small> capture.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 203-213"},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mini review on aromatization of n-alkanes","authors":"Hongqi Wang and N. Raveendran Shiju","doi":"10.1039/D4RE00384E","DOIUrl":"https://doi.org/10.1039/D4RE00384E","url":null,"abstract":"<p >The catalytic aromatization of <em>n</em>-alkanes is an important process in the chemical industry, especially for the production of value-added aromatics from the abundant and unreactive small alkanes. This mini review summarizes the recent progress on the development of catalysts for the aromatization of <em>n</em>-alkanes and the mechanistic studies. The effects of various catalysts (<em>e.g.</em> shape selective zeolites and noble metals) and reactant compositions on the aromatization performance are discussed to shed light on the rational design of novel heterogeneous catalysts.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 4","pages":" 768-776"},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00384e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Ramos, Giovani Maltempi-Mendes, Adriano Francisco Siqueira, Diovana Aparecida dos Santos Napoleão and Anuj Kumar Chandel
{"title":"Kinetic analysis of kraft lignin conversion via the Fenton process: process optimization and stochastic modelling†","authors":"Lucas Ramos, Giovani Maltempi-Mendes, Adriano Francisco Siqueira, Diovana Aparecida dos Santos Napoleão and Anuj Kumar Chandel","doi":"10.1039/D4RE00401A","DOIUrl":"https://doi.org/10.1039/D4RE00401A","url":null,"abstract":"<p >Lignin is a macromolecule with a highly branched and complex structure, making it difficult to degrade. It is a by-product of the pulp and paper industry and extensive treatment is required to mitigate environmental issues associated with effluent discharge. As an alternative, lignin can be treated through advanced oxidative processes (AOPs) using the Fenton reaction, which involves hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) and iron ions. In this context, a rotational central composite design (RCCD) was conducted to optimize lignin degradation using different molar ratios of H<small><sub>2</sub></small>O<small><sub>2</sub></small>/Fe<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small>/Fe<small><sup>3+</sup></small> to assess the synergistic catalytic action of ions. The reactions were conducted in a batch reactor (2 L capacity), and a kinetic study of lignin degradation was performed using a stochastic model to characterize the oxidative process. Optimized conditions for the Fenton reaction were predicted, adopting a molar ratio of H<small><sub>2</sub></small>O<small><sub>2</sub></small>/Fe<small><sup>2+</sup></small> of 9.0 and H<small><sub>2</sub></small>O<small><sub>2</sub></small>/Fe<small><sup>3+</sup></small> of 6.0. The optimal conditions resulted in a 47.3% reduction in total organic carbon (TOC), reaching a conversion of over 80% in the depolymerization process. A quadratic model performed for the response variable TOC reduction showed a correlation coefficient (<em>R</em><small><sup>2</sup></small>) of 0.926, indicating the model's quality and its ability to predict the variable with the greatest influence on the lignin depolymerization process. Further, <em>Pseudomonas putida</em> exhibited growth on low-molecular-weight aromatic molecules after depolymerization of kraft lignin.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 119-129"},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Theodoros Papalas, Andy N. Antzaras and Angeliki A. Lemonidou
{"title":"Unveiling the dynamic CO2 capture performance of MgO promoted with molten salts and CaCO3via fixed bed reactor experiments†","authors":"Theodoros Papalas, Andy N. Antzaras and Angeliki A. Lemonidou","doi":"10.1039/D4RE00432A","DOIUrl":"https://doi.org/10.1039/D4RE00432A","url":null,"abstract":"<p >Carbonate looping using MgO-based materials has recently ignited scientific interest for CO<small><sub>2</sub></small> capture at intermediate temperatures (275–375 °C), with the main limitation being the slow carbonation kinetics of MgO. Molten alkali nitrates and metal carbonates have been identified as promoters that provide an alternative reaction mechanism for an enhanced carbonation rate. However, the evaluation of the ability of these materials to effectively remove CO<small><sub>2</sub></small> from a gas feed under realistic reactor configurations is still required. This study investigated the CO<small><sub>2</sub></small> capture performance of magnesite-derived MgO promoted with limestone and molten Li, Na and K nitrates under carbonate looping conditions in a fixed bed reactor. The CO<small><sub>2</sub></small> capture efficiency was enhanced in the presence of H<small><sub>2</sub></small>O, by increasing the gas–solid contact time and by decreasing the carbonation temperature. The evaluation demonstrated that ∼75% CO<small><sub>2</sub></small> stripping of a gas feed with 30% CO<small><sub>2</sub></small> concentration at 275 °C and a space velocity of 300 h<small><sup>−1</sup></small> is possible, a performance that highlights and expands the potential and possible applications of MgO-based materials.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 168-176"},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00432a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Prieschl, David Cantillo, C. Oliver Kappe and Gabriele Laudadio
{"title":"Scalable electrocatalyzed formation of C–O bonds using flow reactor technology†","authors":"Michael Prieschl, David Cantillo, C. Oliver Kappe and Gabriele Laudadio","doi":"10.1039/D4RE00438H","DOIUrl":"https://doi.org/10.1039/D4RE00438H","url":null,"abstract":"<p >The development of modular and robust synthetic routes that can serve both in medicinal and process chemistry settings is rare. Generally, highly modular medicinal chemistry routes are too hazardous and expensive to be translated into a process chemistry environment. Taking the case study of delamanid, a pharmaceutical compound used for multidrug-resistant tuberculosis treatment, the development of a sustainable and modular but scalable formation of C–O bonds <em>via</em> an electrocatalytic method is presented. In this work, the electrochemical batch reaction was studied, addressing critical reproducibility issues related with the process. Furthermore, the reaction was successfully translated to a flow electrochemical reactor design, which allowed the use of carbon felt electrodes. The high modularity of the protocol was demonstrated by the synthesis of 11 different examples, while the scalability of the reaction was proven by a gram scale preparation of a key intermediate for the synthesis of delamanid.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 130-134"},"PeriodicalIF":3.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00438h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Shen, A. Pikalev, F. J. J. Peeters, J. Gans and M. C. M. van de Sanden
{"title":"Two-temperature model of the non-thermal chemical dissociation of CO2†","authors":"Q. Shen, A. Pikalev, F. J. J. Peeters, J. Gans and M. C. M. van de Sanden","doi":"10.1039/D4RE00300D","DOIUrl":"https://doi.org/10.1039/D4RE00300D","url":null,"abstract":"<p >A two-temperature model with a vibrational temperature different from the gas temperature is presented for the decomposition of CO<small><sub>2</sub></small>. All vibrational modes of CO<small><sub>2</sub></small>, CO and O<small><sub>2</sub></small> are included, and a novel procedure to calculate the vibrational–dissociation reaction rate constant is proposed. In all cases, a Boltzmann distribution is assumed for the vibrational states and the effect of the activation barrier on the chemical reactions is taken into account using the Fridman–Macheret expression. The non-thermal reaction rate constants are therefore functions of gas and vibrational temperatures. The results show that relatively higher vibrational temperatures benefit CO<small><sub>2</sub></small> conversion. This work provides more insights into the dissociation and recombination reactions of CO<small><sub>2</sub></small> conversion under non-thermal conditions and offers the opportunity for multi-dimensional non-thermal modelling in the future.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 146-157"},"PeriodicalIF":3.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}