{"title":"酸性离子液体修饰的共价有机框架TpPa-SO3H:一种可重复使用的固体酸催化剂,用于从低品位酸性油中可持续生产生物柴油","authors":"Xingyi Jia, Wenlei Xie and Heping Li","doi":"10.1039/D4RE00501E","DOIUrl":null,"url":null,"abstract":"<p >Hierarchical porous solid catalysts, with features such as large surface area, low mass transfer resistance, and high accessibility of active sites, have emerged as ideal catalysts for promoting large biomass molecule-involving reactions. In this study, an acidic ionic liquid [PrSO<small><sub>3</sub></small>HMIM] [HSO<small><sub>4</sub></small>] loaded covalent organic framework (COF) solid catalyst (<em>x</em>AIL@TpPa–SO<small><sub>3</sub></small>H) was developed as an effective and recoverable catalyst for the efficient production of biodiesel. The solid catalysts featuring hierarchical porous structure and high surface acidities effectively improved the mass diffusion rate of oily macromolecules and easy accessibility of active sites. This catalyst demonstrated enhanced activities in the transesterification of triglycerides and esterification of free fatty acids (FFAs) simultaneously, which could achieve one-step production of biodiesel from low-grade acidic oils. Under the optimal conditions of a methanol to soybean oil molar ratio of 30 : 1, 10 wt% of catalyst loading (relative to the used soybean oil), and reaction temperature of 120 °C for 8 h, an oil conversion of 93.9% and full FFA conversion could be concurrently attained by adopting this developed catalyst. Kinetic studies have identified that the apparent activation energy <em>E</em><small><sub>a</sub></small> of the oil transesterification was 45.36 kJ mol<small><sup>−1</sup></small>. Additionally, this catalyst exhibited satisfactory acid- and water-resistance even with an FFA level of 40% and water content of 4%, and after four times of reuse, over 80% oil conversion could still be attained, hereby posing its high potential for sustainable and green production of biodiesel particularly with low-grade acidic oils as feedstocks.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 1932-1948"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidic ionic liquid-decorated covalent organic framework TpPa–SO3H: a reusable solid acid catalyst used for sustainable biodiesel production from low-grade acidic oils\",\"authors\":\"Xingyi Jia, Wenlei Xie and Heping Li\",\"doi\":\"10.1039/D4RE00501E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hierarchical porous solid catalysts, with features such as large surface area, low mass transfer resistance, and high accessibility of active sites, have emerged as ideal catalysts for promoting large biomass molecule-involving reactions. In this study, an acidic ionic liquid [PrSO<small><sub>3</sub></small>HMIM] [HSO<small><sub>4</sub></small>] loaded covalent organic framework (COF) solid catalyst (<em>x</em>AIL@TpPa–SO<small><sub>3</sub></small>H) was developed as an effective and recoverable catalyst for the efficient production of biodiesel. The solid catalysts featuring hierarchical porous structure and high surface acidities effectively improved the mass diffusion rate of oily macromolecules and easy accessibility of active sites. This catalyst demonstrated enhanced activities in the transesterification of triglycerides and esterification of free fatty acids (FFAs) simultaneously, which could achieve one-step production of biodiesel from low-grade acidic oils. Under the optimal conditions of a methanol to soybean oil molar ratio of 30 : 1, 10 wt% of catalyst loading (relative to the used soybean oil), and reaction temperature of 120 °C for 8 h, an oil conversion of 93.9% and full FFA conversion could be concurrently attained by adopting this developed catalyst. Kinetic studies have identified that the apparent activation energy <em>E</em><small><sub>a</sub></small> of the oil transesterification was 45.36 kJ mol<small><sup>−1</sup></small>. Additionally, this catalyst exhibited satisfactory acid- and water-resistance even with an FFA level of 40% and water content of 4%, and after four times of reuse, over 80% oil conversion could still be attained, hereby posing its high potential for sustainable and green production of biodiesel particularly with low-grade acidic oils as feedstocks.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 8\",\"pages\":\" 1932-1948\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00501e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00501e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Acidic ionic liquid-decorated covalent organic framework TpPa–SO3H: a reusable solid acid catalyst used for sustainable biodiesel production from low-grade acidic oils
Hierarchical porous solid catalysts, with features such as large surface area, low mass transfer resistance, and high accessibility of active sites, have emerged as ideal catalysts for promoting large biomass molecule-involving reactions. In this study, an acidic ionic liquid [PrSO3HMIM] [HSO4] loaded covalent organic framework (COF) solid catalyst (xAIL@TpPa–SO3H) was developed as an effective and recoverable catalyst for the efficient production of biodiesel. The solid catalysts featuring hierarchical porous structure and high surface acidities effectively improved the mass diffusion rate of oily macromolecules and easy accessibility of active sites. This catalyst demonstrated enhanced activities in the transesterification of triglycerides and esterification of free fatty acids (FFAs) simultaneously, which could achieve one-step production of biodiesel from low-grade acidic oils. Under the optimal conditions of a methanol to soybean oil molar ratio of 30 : 1, 10 wt% of catalyst loading (relative to the used soybean oil), and reaction temperature of 120 °C for 8 h, an oil conversion of 93.9% and full FFA conversion could be concurrently attained by adopting this developed catalyst. Kinetic studies have identified that the apparent activation energy Ea of the oil transesterification was 45.36 kJ mol−1. Additionally, this catalyst exhibited satisfactory acid- and water-resistance even with an FFA level of 40% and water content of 4%, and after four times of reuse, over 80% oil conversion could still be attained, hereby posing its high potential for sustainable and green production of biodiesel particularly with low-grade acidic oils as feedstocks.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.