Bavo Vandekerckhove, Stefan Desimpel, Bart Ruttens, Massimo Bocus, Wim Temmerman, Bert Metten, Veronique Van Speybroeck, Thomas S. A. Heugebaert and Christian V. Stevens
{"title":"通过贝叶斯优化法在连续流中直接氨解甲酯","authors":"Bavo Vandekerckhove, Stefan Desimpel, Bart Ruttens, Massimo Bocus, Wim Temmerman, Bert Metten, Veronique Van Speybroeck, Thomas S. A. Heugebaert and Christian V. Stevens","doi":"10.1039/D5RE00163C","DOIUrl":null,"url":null,"abstract":"<p >Amides play a crucial role in the pharmaceutical, animal health and agrochemical industry. Despite the availability of various catalytic systems and coupling reagents, many methods suffered from long reaction times and poor atom economy. The direct synthesis of primary amides remained particularly challenging due to the limited availability of suitable nitrogen sources. In this study, continuous flow technology was explored as a process-intensification approach for the direct amidation of methyl esters to produce primary amides. Methanolic ammonia was employed as a nitrogen source to enhance process efficiency while circumventing the limitations of aqueous ammonia and the hazards of gaseous ammonia. Seventeen substrates were screened to assess their aminolysis reactivity under these conditions. As a proof of concept, methyl picolinate was selected for continuous flow optimization using Bayesian optimization. Therefore, a custom-designed high-pressure, high-temperature continuous flow reactor was utilized to achieve efficient, safe and scalable synthesis (200 °C, 50 bar).</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 1887-1896"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d5re00163c?page=search","citationCount":"0","resultStr":"{\"title\":\"Direct aminolysis of methyl esters with ammonia in continuous flow through Bayesian optimization†\",\"authors\":\"Bavo Vandekerckhove, Stefan Desimpel, Bart Ruttens, Massimo Bocus, Wim Temmerman, Bert Metten, Veronique Van Speybroeck, Thomas S. A. Heugebaert and Christian V. Stevens\",\"doi\":\"10.1039/D5RE00163C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amides play a crucial role in the pharmaceutical, animal health and agrochemical industry. Despite the availability of various catalytic systems and coupling reagents, many methods suffered from long reaction times and poor atom economy. The direct synthesis of primary amides remained particularly challenging due to the limited availability of suitable nitrogen sources. In this study, continuous flow technology was explored as a process-intensification approach for the direct amidation of methyl esters to produce primary amides. Methanolic ammonia was employed as a nitrogen source to enhance process efficiency while circumventing the limitations of aqueous ammonia and the hazards of gaseous ammonia. Seventeen substrates were screened to assess their aminolysis reactivity under these conditions. As a proof of concept, methyl picolinate was selected for continuous flow optimization using Bayesian optimization. Therefore, a custom-designed high-pressure, high-temperature continuous flow reactor was utilized to achieve efficient, safe and scalable synthesis (200 °C, 50 bar).</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 8\",\"pages\":\" 1887-1896\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/re/d5re00163c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00163c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00163c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct aminolysis of methyl esters with ammonia in continuous flow through Bayesian optimization†
Amides play a crucial role in the pharmaceutical, animal health and agrochemical industry. Despite the availability of various catalytic systems and coupling reagents, many methods suffered from long reaction times and poor atom economy. The direct synthesis of primary amides remained particularly challenging due to the limited availability of suitable nitrogen sources. In this study, continuous flow technology was explored as a process-intensification approach for the direct amidation of methyl esters to produce primary amides. Methanolic ammonia was employed as a nitrogen source to enhance process efficiency while circumventing the limitations of aqueous ammonia and the hazards of gaseous ammonia. Seventeen substrates were screened to assess their aminolysis reactivity under these conditions. As a proof of concept, methyl picolinate was selected for continuous flow optimization using Bayesian optimization. Therefore, a custom-designed high-pressure, high-temperature continuous flow reactor was utilized to achieve efficient, safe and scalable synthesis (200 °C, 50 bar).
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.