甲烷/正庚烷双燃料火焰中不同应变速率下NO生成路径及燃烧特性的综合数值分析

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pengxiang Zhang, Jianfei Xi, Shuang Li, Guoqing Yang, Yunjun Wang, Yinggui Zhou and Jie Cai
{"title":"甲烷/正庚烷双燃料火焰中不同应变速率下NO生成路径及燃烧特性的综合数值分析","authors":"Pengxiang Zhang, Jianfei Xi, Shuang Li, Guoqing Yang, Yunjun Wang, Yinggui Zhou and Jie Cai","doi":"10.1039/D5RE00181A","DOIUrl":null,"url":null,"abstract":"<p >The influence of strain rate on the combustion characteristics and routes of NO formation in methane/<em>n</em>-heptane dual-fuel engines was scrutinized in this research, utilizing a counterflow flame model. The insights gleaned from this study provide valuable theoretical guidance for a more profound comprehension of the NO formation mechanism, thereby facilitating the enhancement and optimization of natural gas–diesel dual-fuel engines. The findings reveal that with an increasing strain rate, the peak flame temperature initially exhibits a slight increase followed by a decrease, while the heat release rate experiences a significant surge. Concurrently, the high-temperature region and the distribution areas of the main species and intermediate products are markedly reduced. The NO emission index undergoes initial fluctuations and then demonstrates a consistent decline with the increment of the strain rate, implying that a higher strain rate is conducive to curtailing NO formation. Relative to the enhancing effect of elevated O radical molar fractions on NO formation, the reduction in flame temperature exerts a more pronounced inhibitory influence on the generation of thermal NO. An elevated strain rate also intensifies the production of CH radicals, which in turn, bolsters the formation of prompt NO. Furthermore, an increase in strain rate accelerates the reaction between HCCO and CH<small><sub>2</sub></small> radicals with NO, augmenting NO consumption and enhancing the reduction effect of the reburn route on NO. The contributions of the N<small><sub>2</sub></small>O intermediate route and the NNH intermediate route to NO generation are found to be negligible.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 1845-1858"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive numerical analysis of NO generation routes and combustion characteristics with varying strain rates in methane/n-heptane dual fuel flames\",\"authors\":\"Pengxiang Zhang, Jianfei Xi, Shuang Li, Guoqing Yang, Yunjun Wang, Yinggui Zhou and Jie Cai\",\"doi\":\"10.1039/D5RE00181A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The influence of strain rate on the combustion characteristics and routes of NO formation in methane/<em>n</em>-heptane dual-fuel engines was scrutinized in this research, utilizing a counterflow flame model. The insights gleaned from this study provide valuable theoretical guidance for a more profound comprehension of the NO formation mechanism, thereby facilitating the enhancement and optimization of natural gas–diesel dual-fuel engines. The findings reveal that with an increasing strain rate, the peak flame temperature initially exhibits a slight increase followed by a decrease, while the heat release rate experiences a significant surge. Concurrently, the high-temperature region and the distribution areas of the main species and intermediate products are markedly reduced. The NO emission index undergoes initial fluctuations and then demonstrates a consistent decline with the increment of the strain rate, implying that a higher strain rate is conducive to curtailing NO formation. Relative to the enhancing effect of elevated O radical molar fractions on NO formation, the reduction in flame temperature exerts a more pronounced inhibitory influence on the generation of thermal NO. An elevated strain rate also intensifies the production of CH radicals, which in turn, bolsters the formation of prompt NO. Furthermore, an increase in strain rate accelerates the reaction between HCCO and CH<small><sub>2</sub></small> radicals with NO, augmenting NO consumption and enhancing the reduction effect of the reburn route on NO. The contributions of the N<small><sub>2</sub></small>O intermediate route and the NNH intermediate route to NO generation are found to be negligible.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 8\",\"pages\":\" 1845-1858\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00181a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00181a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用逆流火焰模型,研究了应变速率对甲烷/正庚烷双燃料发动机燃烧特性和NO生成途径的影响。本研究获得的见解为更深入地理解NO的形成机理提供了有价值的理论指导,从而促进了天然气-柴油双燃料发动机的改进和优化。结果表明:随着应变速率的增大,火焰峰值温度呈现先升高后降低的趋势,而放热速率则呈现出明显的上升趋势。同时,高温区和主要物种及中间产物的分布区域明显缩小。随着应变速率的增加,NO发射指数呈现先波动后下降的趋势,说明较高的应变速率有利于抑制NO的形成。相对于提高O自由基摩尔分数对NO生成的促进作用,火焰温度的降低对热NO生成的抑制作用更为明显。应变速率的升高也会加强CH自由基的产生,而CH自由基反过来又会促进NO的形成。应变速率的增加加速了HCCO和CH2自由基与NO的反应,增加了NO的消耗,增强了再燃烧途径对NO的还原效果。N2O中间途径和NNH中间途径对NO生成的贡献可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comprehensive numerical analysis of NO generation routes and combustion characteristics with varying strain rates in methane/n-heptane dual fuel flames

A comprehensive numerical analysis of NO generation routes and combustion characteristics with varying strain rates in methane/n-heptane dual fuel flames

The influence of strain rate on the combustion characteristics and routes of NO formation in methane/n-heptane dual-fuel engines was scrutinized in this research, utilizing a counterflow flame model. The insights gleaned from this study provide valuable theoretical guidance for a more profound comprehension of the NO formation mechanism, thereby facilitating the enhancement and optimization of natural gas–diesel dual-fuel engines. The findings reveal that with an increasing strain rate, the peak flame temperature initially exhibits a slight increase followed by a decrease, while the heat release rate experiences a significant surge. Concurrently, the high-temperature region and the distribution areas of the main species and intermediate products are markedly reduced. The NO emission index undergoes initial fluctuations and then demonstrates a consistent decline with the increment of the strain rate, implying that a higher strain rate is conducive to curtailing NO formation. Relative to the enhancing effect of elevated O radical molar fractions on NO formation, the reduction in flame temperature exerts a more pronounced inhibitory influence on the generation of thermal NO. An elevated strain rate also intensifies the production of CH radicals, which in turn, bolsters the formation of prompt NO. Furthermore, an increase in strain rate accelerates the reaction between HCCO and CH2 radicals with NO, augmenting NO consumption and enhancing the reduction effect of the reburn route on NO. The contributions of the N2O intermediate route and the NNH intermediate route to NO generation are found to be negligible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信