{"title":"Correction: Parameter investigation of an organic–inorganic hybrid resin for a 3D-printed microchannel heat exchanger","authors":"Sunjae Lee, Amirreza Mottafegh and Dong-Pyo Kim","doi":"10.1039/D4RE90029D","DOIUrl":"10.1039/D4RE90029D","url":null,"abstract":"<p >Correction for ‘Parameter investigation of an organic–inorganic hybrid resin for a 3D-printed microchannel heat exchanger’ by Sunjae Lee <em>et al.</em>, <em>React. Chem. Eng.</em>, 2024, <strong>9</strong>, 2089–2097, https://doi.org/10.1039/D3RE00694H.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2520-2520"},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re90029d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denis O. Kuleshov, Ivan A. Gromov, Ilya I. Pikovskoi, Alexandra A. Onuchina, Ilya S. Voronov, Dmitrii M. Mazur and Albert T. Lebedev
{"title":"Microdroplet chemical reactor prototype based on multiplexed electrospray†","authors":"Denis O. Kuleshov, Ivan A. Gromov, Ilya I. Pikovskoi, Alexandra A. Onuchina, Ilya S. Voronov, Dmitrii M. Mazur and Albert T. Lebedev","doi":"10.1039/D4RE00264D","DOIUrl":"10.1039/D4RE00264D","url":null,"abstract":"<p >The advent of ambient mass spectrometry has yielded novel approaches to chemical transformations for analytical and preparative applications. These methods utilize the microdroplets generated <em>via</em> spray ionization techniques. Numerous studies have demonstrated the superior efficiency of microdroplet-based chemical reactions. This efficiency is manifested in a substantial acceleration of reactions (up to a million-fold compared to bulk reactions) and a shift in reaction pathways, enabling the synthesis of compounds that are challenging to obtain using conventional methods. However, the widespread implementation of this approach has been hindered by its limited productivity. To address this challenge, this paper introduces a microdroplet chemical reactor prototype (MCR prototype) that employs multiplexed pneumatic/electrospray to enhance productivity. The performance of the MCR prototype was evaluated using the cyclohexanone phenylhydrazone synthesis reaction from phenylhydrazine and cyclohexanone in methanol as a model system. The prototype demonstrated a significant acceleration of the reaction relative to its occurrence in bulk, with the apparent acceleration factor (AAF) exceeding a value of 83 × 10<small><sup>6</sup></small>. The MCR prototype can spray the reaction mixture at a rate of up to 17 mL min<small><sup>−1</sup></small> while maintaining the acceleration effect, achieving a productivity of grams per hour. This prototype offers a promising solution for addressing practical and research challenges in microdroplet chemical synthesis.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2683-2690"},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iman Moshiritabrizi, Jonathan P. McMullen, Brian M. Wyvratt and Kimberley B. McAuley
{"title":"Process knowledge for drug substance production via kinetic modeling, parameter estimability analysis and reaction optimization†","authors":"Iman Moshiritabrizi, Jonathan P. McMullen, Brian M. Wyvratt and Kimberley B. McAuley","doi":"10.1039/D4RE00210E","DOIUrl":"10.1039/D4RE00210E","url":null,"abstract":"<p >A mechanistic model is developed to study the formation of 2,6-difluoropurine-9-THP from starting material 2,6-dichloropurine-9-THP. The 2,6-difluoropurine-9-THP product is an intermediate used in the synthesis of islatravir (MK-8591), a therapy for treatment of HIV. Kinetic parameters are estimated from 26 batch reactor experiments. An error-in-variables-model (EVM) approach is used for parameter estimation to address uncertainty in initial concentrations of trimethylamine (TMA), a gaseous reagent. A parameter subset selection method is used to determine that 33 out of 39 model parameters should be estimated along with 26 uncertain initial concentrations. The remaining six parameters are kept at their initial values to prevent overfitting of available data. EVM parameter estimates are compared with estimates obtained using a traditional weighted-least-squares approach that neglects input uncertainties. The EVM estimates provide a better fit to the data and, as shown using cross-validation, improved accuracy for model predictions. The resulting model and EVM parameter values are used to find reactor conditions that maximize product yield while obeying constraints on temperature, the initial ratio of TMA to starting material, batch time, and the volume of solvent. An optimal yield of 92.04% is predicted, which is higher than the yield of 90.26% at the best experimental conditions in the data set. Contour plots are used to highlight the insensitivity of the optimal yield to batch time and solvent volume, indicating that a yield of 91.83% could be obtained using a 50% lower batch time and 33% less solvent.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2669-2682"},"PeriodicalIF":3.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating metal-free quaternized boronate esters as efficient catalysts for the fixation of CO2 with epoxides to form cyclic carbonates under suitable conditions†","authors":"Eyyup Yasar, Emine Aytar and Ahmet Kilic","doi":"10.1039/D4RE00282B","DOIUrl":"10.1039/D4RE00282B","url":null,"abstract":"<p >The conversion of CO<small><sub>2</sub></small> into high value-added chemicals is receiving increasing attention from the scientific community, commercial enterprises, and policymakers due to environmental problems like global warming. Herein, metal-free quaternized boronate esters (<strong>QBE</strong><small><sub><strong>1</strong></sub></small>–<strong>QBE</strong><small><sub><strong>8</strong></sub></small>) were prepared and then used as potential efficient metal-free catalysts for the chemical valorization of CO<small><sub>2</sub></small> to organic cyclic carbonates under solvent-free and sustainable green atmospheric and high-pressure conditions (1 atm or 1.6 MPa, 100 °C, 2 h) as an alternative to toxic reagents such as phosgene. Analyses performed with various spectroscopic tools (<small><sup>1</sup></small>H, <small><sup>13</sup></small>C, and <small><sup>11</sup></small>B NMR, FT-IR, UV-vis, LC-MS/MS, elemental analysis, and melting point measurement together with thermal gravimetric analysis (TGA-DTA)) revealed that the targeted quaternized boronate esters were successfully synthesized. After that, the Lewis acidity of the synthesized quaternized boronate esters was investigated by the traditional Gutmann–Beckett method and found to range from 53.72 to 50.47 ppm, respectively. In the presence of 0.1 mol% metal-free quaternized boronate ester <strong>QBE</strong><small><sub><strong>3</strong></sub></small> and 0.2 mol% co-catalyst DMAP, 4-chloromethyl-1,3-dioxalan-2-one was obtained as a cyclic carbonate in 51.7% yield at 1 atm and 100 °C and then under 1.6 MPa and 100 °C in an excellent 94.9% yield with 97.9% selectivity in 2 h, allowing us to facilitate the fixation of CO<small><sub>2</sub></small> into cyclic carbonates rapidly. According to the catalytic findings, the optimum cat./ECH ratio for CO<small><sub>2</sub></small> cycloaddition reactions is 1/1000.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2938-2953"},"PeriodicalIF":3.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The graph automorphism group of the dissociation microequilibrium of polyprotic acids","authors":"Nicolás Salas, Justin López and Carlos A. Arango","doi":"10.1039/D4RE00271G","DOIUrl":"10.1039/D4RE00271G","url":null,"abstract":"<p >The dissociation micro-states (DMSs) of an <em>N</em>-protic acid are described using set theory notation, which facilitates the mathematical description of the dissociation micro-equilibrium (DME). In particular, the DME constants are easily obtained in terms of the dissociation equilibrium constants and the molar fractions of the DMSs. Representing the DME in terms of graph theory allows us to identify permutations between DMSs that preserve the vertex-edge connectivity of the graph. These permutations, along with their compositions, led to the identification of the direct product <em>C</em><small><sub>2</sub></small> × <em>S</em><small><sub><em>N</em></sub></small> of the cyclic group <em>C</em><small><sub>2</sub></small> and the symmetric group <em>S</em><small><sub><em>N</em></sub></small> as the graph automorphism group of the microdissociation of <em>N</em>-protic acids with <em>N</em> = 1, 2, …, 6. In this context, the microdissociations are associated with the <em>C</em><small><sub>2</sub></small> group while the tautomerizations are related to the <em>S</em><small><sub><em>N</em></sub></small> group.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2925-2937"},"PeriodicalIF":3.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards continuous flow manufacturing of active pharmaceutical ingredients in Africa: a perspective","authors":"Sinazo Nqeketo and Cloudius R. Sagandira","doi":"10.1039/D4RE00299G","DOIUrl":"10.1039/D4RE00299G","url":null,"abstract":"<p >Africa has a double burden of communicable and non-communicable diseases, accounting for 26% of the global disease burden. Pharmaceutical medicines are critical components in treating these diseases; however, only 3% of global drug production is carried out in Africa, which results in limited access to medicines. The local active pharmaceutical ingredient (API) manufacturing industry is not well established. Africa hugely depends on imports. Thus, the need to establish local API manufacturing capability is obvious. In this review, we highlight the efforts and hurdles in the local manufacturing of APIs and recommend sustainable ways to establish local continuous flow API manufacturing capability. Continuous flow manufacturing is an innovative and enabling technology platform that is increasingly impacting the pharmaceutical industry. Africa can leverage continuous flow technology to establish a state-of-the-art, sustainable, competitive local API manufacturing industry. Although this approach is noble, it is not without its challenges. Some of the current challenges for the full-scale implementation of continuous flow manufacturing in Africa include the lack of pilot scale or demonstration facilities to bridge the chasm between research and commercialization, inadequate funding, prohibitive infrastructure costs and scarcity of skilled local talents with knowledge and expertise in modern manufacturing techniques. This review also showcases all examples in which continuous flow technology has been successfully applied exclusively in API syntheses within the African continent. The grand vision is to contribute towards the transformation of Africa into an innovation-led, technology-based and knowledge-based continent through the adoption of cutting edge innovative and enabling technologies. This can transform the local pharmaceutical industry into a responsive industry that meets continental health security, social, economic and political needs according to the African Union's Agenda 2063, Sustainable Development Goal 3 (SDG3) and Universal Health Coverage (UHC) goals.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2532-2551"},"PeriodicalIF":3.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computer-aided multi-objective optimization integrated with multi-dimensional assessment for oil to chemical process†","authors":"Xin Zhou, Zhibo Zhang, Huibing Shi, Deming Zhao, Yaowei Wang, Hao Yan, Hui Zhao, Yibin Liu, Haiyan Luo, Weitao Zhang, Xiaobo Chen, Lianying Wu and Chaohe Yang","doi":"10.1039/D4RE00219A","DOIUrl":"10.1039/D4RE00219A","url":null,"abstract":"<p >With the upsurge in the proven exploitation of offshore oil and the anticipated deceleration of the consumption of auto fuels (gasoline and diesel), the technique of transforming oil into chemicals holds enormous promise to boost the upcoming industry transition. Herein, we propose a novel route for maximizing chemical production from offshore crude oil <em>via</em> a one-step process (OCOCC). The innovative patented two-stage riser reactor is capable of executing diverse refining scenarios. A multi-objective optimization strategy was employed to conduct molecular-level modeling procedures. Furthermore, the case study of integrated offshore green wind power and seawater desalination in the OCOCC process is also executed. The results indicated that the integrated OCOCC process could expeditiously convert offshore paraffin-based crude oil into ethene and propene beyond 40 wt% and highlight its outstanding financial, social, lifestyle, and ecological benefits. These observations could energetically influence technique enhancement, as well as optimization.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2794-2817"},"PeriodicalIF":3.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamara S. Kharlamova, Konstantin L. Timofeev, Denis P. Morilov, Mikhail A. Salaev, Andrey I. Stadnichenko, Olga A. Stonkus and Olga V. Vodyankina
{"title":"Design strategy for effective supported Au–Pd catalysts for selective oxidation of 5-hydroxymethylfurfural under mild conditions†","authors":"Tamara S. Kharlamova, Konstantin L. Timofeev, Denis P. Morilov, Mikhail A. Salaev, Andrey I. Stadnichenko, Olga A. Stonkus and Olga V. Vodyankina","doi":"10.1039/D4RE00355A","DOIUrl":"10.1039/D4RE00355A","url":null,"abstract":"<p >Preparation of catalysts with predesigned composition, structure and distribution of active species is an important challenge as such characteristics determine the catalytic performance. This work introduces a strategy to rationally design effective catalysts for the selective HMF oxidation to FDCA under mild conditions. We show the effect of the preparation technique (impregnation, deposition–precipitation, impregnation–reduction) on the active species formation in ZrO<small><sub>2</sub></small>-supported Au, Pd, and AuPd catalysts, discuss the effects of the metal dispersion and state on the catalyst performance and provide insight into reaction pathways of aerobic HMF oxidation over bimetallic AuPd/ZrO<small><sub>2</sub></small> catalysts. The impregnation–reduction allows preparing the active mono- and bimetallic catalysts in contrast to other techniques used, with the bimetallic formulations featuring the enhanced catalyst performance caused by the synergistic effect. The alloyed Au<small><sub>0.56</sub></small>Pd<small><sub>0.44</sub></small>/ZrO<small><sub>2</sub></small> catalyst shows a per-site TOF of 0.25 s<small><sup>−1</sup></small> that is ∼4 times higher than the one for the Au/ZrO<small><sub>2</sub></small> catalysts.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2691-2709"},"PeriodicalIF":3.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Markus Hegelmann, Wilson F. Bohórquez, Johannes Luibl, Andreas Jess, Alvaro Orjuela and Mirza Cokoja
{"title":"Biphasic phase-transfer catalysis: epoxidation of vegetable oils by surface active ionic liquids in water†","authors":"Markus Hegelmann, Wilson F. Bohórquez, Johannes Luibl, Andreas Jess, Alvaro Orjuela and Mirza Cokoja","doi":"10.1039/D4RE00215F","DOIUrl":"10.1039/D4RE00215F","url":null,"abstract":"<p >Vegetable oils (VOs) are an environmentally benign alternative and sustainable carbon feedstock for various industrially relevant compounds, <em>e.g.</em> epoxidized products (EVOs). The commercial production of EVOs is a heterogeneous liquid–liquid reaction with low reaction rates and a limited epoxide selectivity. Furthermore, the separation of the EVOs from the reaction mixture is very intricate, limiting large-scale applicability. In this work, we introduce surface-active imidazolium tungstate ionic liquids (SAILs) as sustainable catalysts for the epoxidation of VOs in water using hydrogen peroxide as a green oxidant. Micelle formation and substrate uptake into the aqueous phase depend on the nature of the cation of the SAIL catalyst, which was studied by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM at various concentrations and temperatures. Recycling studies demonstrate that the catalyst remains in the aqueous phase and can be recovered completely. The absence of the catalyst and additive in the product phase is verified by inductively coupled plasma mass spectrometry (ICP-MS) and <small><sup>31</sup></small>P-NMR spectroscopy.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2710-2717"},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00215f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haohui Yan, Yan Chen, Peiwen Liu, Weiping Zhu and Fang Zhao
{"title":"Reliable sizing-up of the 3D curved circular microchannel reactor for continuous flow synthesis of a zidovudine intermediate†","authors":"Haohui Yan, Yan Chen, Peiwen Liu, Weiping Zhu and Fang Zhao","doi":"10.1039/D4RE00200H","DOIUrl":"10.1039/D4RE00200H","url":null,"abstract":"<p >Herein, we report a size scale-up method for a 3D curved circular microchannel reactor (3D-CCMR), based on a rule of keeping fluid velocity and residence time constant during sizing-up and validated <em>via</em> computational fluid dynamics simulation with mixing index as the key evaluation indicator. The energy dissipation rate was also investigated <em>via</em> simulation to evaluate the energy consumption during sizing-up. Then, a scaled-up microreactor (3D-CCMR-2), aiming at a throughput scale-up factor of 4, was manufactured, and it was proved experimentally that the mass and heat transfer performance was not deteriorated in 3D-CCMR-2 as compared to the original microreactor (3D-CCMR-1). Ultimately, the continuous flow synthesis of the intermediate of anti-AIDS drug zidovudine was performed in both 3D-CCMRs and an actual throughput scale-up factor of 4.0 was achieved. The work in this paper represents the first key step for the scale-up of continuous flow synthesis of zidovudine, and the sizing-up strategy proposed in this paper could offer good guidelines for the size scale-up of microreactors.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2750-2761"},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}