皮克林乳剂中同时酶促酯化和酯萃取法回收发酵液中丁醇的研究

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yaoyao Feng, Pierre-Louis Carrette, Christine Dalmazzone and Etienne Jourdier
{"title":"皮克林乳剂中同时酶促酯化和酯萃取法回收发酵液中丁醇的研究","authors":"Yaoyao Feng, Pierre-Louis Carrette, Christine Dalmazzone and Etienne Jourdier","doi":"10.1039/D4RE00625A","DOIUrl":null,"url":null,"abstract":"<p >The recovery of biobutanol from highly diluted aqueous fermentation broth usually suffers from intensive energy consumption. In this study, we developed a Pickering emulsion system stabilized by silica nanoparticles for the rapid and efficient recovery of low concentrations of butanol (&lt;20 g L<small><sup>−1</sup></small>) from fermentation broth in the form of esters. Each droplet in the emulsion system serves as a microreactor for enzymatic esterification of butanol in the water phase, and the ester product is spontaneously extracted to the oil phase, thereby promoting the esterification reaction. The system offers a significantly larger interfacial area and a 2–5 times improvement in reaction rate compared to the biphasic system. Under optimal conditions, the conversion and extraction of butanol from the fermentation broth into butyl butyrate achieved a yield of 79% in the presence of a Pickering emulsion. This study presents a sustainable and efficient approach for the recovery of biobased butanol.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1606-1614"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00625a?page=search","citationCount":"0","resultStr":"{\"title\":\"Simultaneous enzymatic esterification and ester extraction in Pickering emulsions for the recovery of butanol from fermentation broth†\",\"authors\":\"Yaoyao Feng, Pierre-Louis Carrette, Christine Dalmazzone and Etienne Jourdier\",\"doi\":\"10.1039/D4RE00625A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The recovery of biobutanol from highly diluted aqueous fermentation broth usually suffers from intensive energy consumption. In this study, we developed a Pickering emulsion system stabilized by silica nanoparticles for the rapid and efficient recovery of low concentrations of butanol (&lt;20 g L<small><sup>−1</sup></small>) from fermentation broth in the form of esters. Each droplet in the emulsion system serves as a microreactor for enzymatic esterification of butanol in the water phase, and the ester product is spontaneously extracted to the oil phase, thereby promoting the esterification reaction. The system offers a significantly larger interfacial area and a 2–5 times improvement in reaction rate compared to the biphasic system. Under optimal conditions, the conversion and extraction of butanol from the fermentation broth into butyl butyrate achieved a yield of 79% in the presence of a Pickering emulsion. This study presents a sustainable and efficient approach for the recovery of biobased butanol.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 7\",\"pages\":\" 1606-1614\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00625a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00625a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00625a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从高度稀释的水发酵液中回收生物丁醇通常消耗大量能量。在这项研究中,我们开发了一种由二氧化硅纳米颗粒稳定的Pickering乳液体系,用于快速有效地从发酵液中以酯形式回收低浓度的丁醇(< 20g L−1)。乳液体系中的每一个液滴都作为一个微反应器,在水相中进行丁醇酶促酯化反应,酯产物被自发地提取到油相,从而促进酯化反应。与双相体系相比,该体系具有更大的界面面积和2-5倍的反应速率。在最佳条件下,在皮克林乳状液存在下,从发酵液中提取丁醇为丁酸丁酯,产率达到79%。本研究提出了一种可持续、高效的生物丁醇回收方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous enzymatic esterification and ester extraction in Pickering emulsions for the recovery of butanol from fermentation broth†

Simultaneous enzymatic esterification and ester extraction in Pickering emulsions for the recovery of butanol from fermentation broth†

The recovery of biobutanol from highly diluted aqueous fermentation broth usually suffers from intensive energy consumption. In this study, we developed a Pickering emulsion system stabilized by silica nanoparticles for the rapid and efficient recovery of low concentrations of butanol (<20 g L−1) from fermentation broth in the form of esters. Each droplet in the emulsion system serves as a microreactor for enzymatic esterification of butanol in the water phase, and the ester product is spontaneously extracted to the oil phase, thereby promoting the esterification reaction. The system offers a significantly larger interfacial area and a 2–5 times improvement in reaction rate compared to the biphasic system. Under optimal conditions, the conversion and extraction of butanol from the fermentation broth into butyl butyrate achieved a yield of 79% in the presence of a Pickering emulsion. This study presents a sustainable and efficient approach for the recovery of biobased butanol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信