Procedia Technology最新文献

筛选
英文 中文
Multiplexed Electrochemical Immunosensor for Obesity-related Hormones Using Grafted Graphene-modified Electrodes as Platforms for Antibodies Immobilization 用石墨烯修饰电极作为抗体固定平台的多路电化学肥胖相关激素免疫传感器
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.080
G. Martínez-García, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón
{"title":"Multiplexed Electrochemical Immunosensor for Obesity-related Hormones Using Grafted Graphene-modified Electrodes as Platforms for Antibodies Immobilization","authors":"G. Martínez-García,&nbsp;L. Agüí,&nbsp;P. Yáñez-Sedeño,&nbsp;J.M. Pingarrón","doi":"10.1016/j.protcy.2017.04.080","DOIUrl":"10.1016/j.protcy.2017.04.080","url":null,"abstract":"<div><p>An electrochemical immunosensor for the simultaneous determination of ghrelin (GHRL) and peptide YY (PYY) using dual screen-printed carbon electrodes modified with reduced graphene oxide (rGO) is presented. Diazonium salt of 4-aminobenzoic acid (4-ABA) was electrochemically grafted on the modified electrodes allowing covalent immobilization of antibodies. After competitive immunoassays using alkaline phosphatase labelled antigens, the affinity reactions were monitored by DPV upon addition of 1-naphthyl phosphate. Calibration plots showed linear current vs. log [hormone] ranges from 10<sup>-3</sup> to 100 ng/mL GHRL, and 10<sup>-4</sup> to10 ng/mL PYY. The usefulness of dual immunosensor was demonstrated by analysis of spiked human serum and saliva.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87635917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Stilbene Switch Activated by Click Chemistry 二苯乙烯开关由点击化学激活
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.006
Yubin Zhou , Yuanyuan Wu , Oleksandr Pokholenko , Vladislav Papper , Robert S. Marks , Terry W.J. Steele
{"title":"Stilbene Switch Activated by Click Chemistry","authors":"Yubin Zhou ,&nbsp;Yuanyuan Wu ,&nbsp;Oleksandr Pokholenko ,&nbsp;Vladislav Papper ,&nbsp;Robert S. Marks ,&nbsp;Terry W.J. Steele","doi":"10.1016/j.protcy.2017.04.006","DOIUrl":"10.1016/j.protcy.2017.04.006","url":null,"abstract":"<div><p>Stilbenes have not been widely regarded as fluorophore labels due to their difficulty in conjugation. Quenched fluorescence of maleimide functionalized stilbene is found to be restored after thiol binding, enabling separation-free fluorophore labelling.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85683026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Novel Glucose Sensor Using Lutetium Phthalocyanine as Redox Mediator in Reduced Graphene Oxide Conducting Polymer Multifunctional Hydrogel 以酞菁镥为还原氧化石墨烯导电聚合物多功能水凝胶氧化还原介质的新型葡萄糖传感器
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.078
H. Al-Sagur , S. Komathi , A. Khan , A.G. Gurek , A. Hassan
{"title":"A Novel Glucose Sensor Using Lutetium Phthalocyanine as Redox Mediator in Reduced Graphene Oxide Conducting Polymer Multifunctional Hydrogel","authors":"H. Al-Sagur ,&nbsp;S. Komathi ,&nbsp;A. Khan ,&nbsp;A.G. Gurek ,&nbsp;A. Hassan","doi":"10.1016/j.protcy.2017.04.078","DOIUrl":"https://doi.org/10.1016/j.protcy.2017.04.078","url":null,"abstract":"<div><p>Herein, we report a scalable synthesis of multifunctional conducting polyacrylic acid (PAA) hydrogel (MFH) integrated with reduced grapheme oxide (rGO), vinyl substituted polyaniline (VS-PANI) and lutetium phthalocyanine (LuPc<sub>2</sub>) as three dimensional robust matrix for glucose oxidase (GOx) immobilization (PAA-rGO/VS-PANI/LuPc<sub>2</sub>/GOx-MFH). We have integrated the multicomponents such as PAA with rGO, VS-PANI through free radical polymerization using methylene bis-acrylamide, ammonium persulphate as the cross linker and initiator. The LuPc<sub>2</sub> was then doped to form multifunctional hydrogel (PAA-rGO/VS-PANI/LuPc<sub>2</sub>-MFH). Finally, biosensor was fabricated by immobilizing GOx into PAA-rGO/VS-PANI/LuPc<sub>2</sub>-MFH and subsequently used for electrochemical detection of glucose.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138411961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nanostructured Platform Based on Graphene-polypyrrole Composite for Immunosensor Fabrication 基于石墨烯-聚吡咯复合材料的纳米结构平台制备免疫传感器
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.047
Andreea Cernat, Mihaela Tertiș, Claudia Nicoleta Păpară, Ede Bodoki, Robert Săndulescu
{"title":"Nanostructured Platform Based on Graphene-polypyrrole Composite for Immunosensor Fabrication","authors":"Andreea Cernat,&nbsp;Mihaela Tertiș,&nbsp;Claudia Nicoleta Păpară,&nbsp;Ede Bodoki,&nbsp;Robert Săndulescu","doi":"10.1016/j.protcy.2017.04.047","DOIUrl":"10.1016/j.protcy.2017.04.047","url":null,"abstract":"<div><p>A hybrid graphene-polypyrrole (PPy) composite-based platform was elaborated by using nanosphere lithography structuration. This platform was further used for the antibody anti-acetaminophen immobilization in order to obtain an immunosensor for selective detection of paracetamol (acetaminophen) by using electrochemical methods. After patterning of the composite layer, the five-fold improvement of electrochemical signal was observed, suggesting that a higher amount of antibody was immobilized. This strategy permitted the ease and controlled immobilization of bioreceptors on the composite graphene-PPy platform and enhanced the sensitivity for paracetamol detection.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54987386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Graphene-based Biosensors for Dopamine Determination 基于石墨烯的多巴胺测定生物传感器☆
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.046
Luminiţa Fritea , Mihaela Tertiș , Alan Le Goff , Serge Cosnier , Robert Săndulescu , Cecilia Cristea
{"title":"Graphene-based Biosensors for Dopamine Determination","authors":"Luminiţa Fritea ,&nbsp;Mihaela Tertiș ,&nbsp;Alan Le Goff ,&nbsp;Serge Cosnier ,&nbsp;Robert Săndulescu ,&nbsp;Cecilia Cristea","doi":"10.1016/j.protcy.2017.04.046","DOIUrl":"10.1016/j.protcy.2017.04.046","url":null,"abstract":"<div><p>Two different graphene/<em>β</em>-cyclodextrin (CD)-based biosensors were elaborated for dopamine (DA) determination starting from glassy carbon electrode (GCE). First one was obtained by modifying GCE with reduced graphene oxide (RGO), CD and tyrosinase (Tyr) immobilized with a polyethylenimine film. The second biosensor was obtained after the incorporation of RGO functionalized with a new synthesized pyrrole-<em>β</em>-CD derivative and Tyr in an electropolimerized poly-amphiphilic pyrrole film. These two new approaches have resulted in selective and sensitive determination of DA in pharmaceuticals and real human samples.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81673180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The Dynamics of Viscoelastic Layered Systems Studied by Surface Acoustic Wave (SAW) Sensors Operated in a Liquid Phase 用表面声波(SAW)传感器研究了在液相中工作的粘弹性层状系统的动力学
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.044
A. Vikström, M.V. Voinova
{"title":"The Dynamics of Viscoelastic Layered Systems Studied by Surface Acoustic Wave (SAW) Sensors Operated in a Liquid Phase","authors":"A. Vikström,&nbsp;M.V. Voinova","doi":"10.1016/j.protcy.2017.04.044","DOIUrl":"10.1016/j.protcy.2017.04.044","url":null,"abstract":"<div><p>We theoretically study a three-layer continuum model of a surface acoustic wave sensor where the two overlayers are allowed to be viscoelastic. This case is particularly important in biosensing, where soft materials submerged in fluids are commonplace. From the general dispersion equation, we calculate the phase velocity shift and the wave attenuation. We show that there is a viscoelastic coupling between the overlayers which results in unintuitive behavior, e.g., the addition of viscous loading to a soft-film sensor can reduce the attenuation.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86226982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of Electrochemical Glucose Biosensor for the Estimation of Cancer Cell Proliferation 电化学葡萄糖生物传感器在癌细胞增殖评价中的应用
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.095
Madhurantakam Sasya , K. Jayanth babu , John Bosco Balaguru Rayappan , Uma Maheshwari Krishnan
{"title":"Development of Electrochemical Glucose Biosensor for the Estimation of Cancer Cell Proliferation","authors":"Madhurantakam Sasya ,&nbsp;K. Jayanth babu ,&nbsp;John Bosco Balaguru Rayappan ,&nbsp;Uma Maheshwari Krishnan","doi":"10.1016/j.protcy.2017.04.095","DOIUrl":"10.1016/j.protcy.2017.04.095","url":null,"abstract":"","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83600425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Helix Channel Microfluidic Electrophoresis Chip Drove by Low Voltage 低电压驱动螺旋通道微流控电泳芯片
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.050
Jiechao Li , Weiping Yan , Hongfeng Lv
{"title":"Helix Channel Microfluidic Electrophoresis Chip Drove by Low Voltage","authors":"Jiechao Li ,&nbsp;Weiping Yan ,&nbsp;Hongfeng Lv","doi":"10.1016/j.protcy.2017.04.050","DOIUrl":"10.1016/j.protcy.2017.04.050","url":null,"abstract":"<div><p>The conventional microfluidic electrophoresis chip must be applied higher voltage, which limited the microminiaturization and integration. According to the principle of electrophoresis chip, a helix channel electrophoresis chip drove by low voltage was proposed. Some key techniques were researched, which include the bubble issue, optimization of the chip structure, low cost hydrophilic surface modification for the chip, design of miniaturized control and detection system. Test results shown the helix channel chip has better separation than the cross channel chip, and the sample can be successfully separated below 100 V voltage.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89871394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of Care with Micro Fluidic Paper Based Device Incorporated with Nanocrys of Zeolite –GO for Electrochemical Sensing of Date Rape Drug 结合纳米沸石氧化石墨烯的微流体纸基装置在枣椰菜药物电化学传感中的应用
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.039
Jagriti Narang , Nitesh Malhotra , Chaitali Singhal , Ashish Mathur , Dhritiman Chakraborty , Aviraj Ingle , C.S. Pundir
{"title":"Point of Care with Micro Fluidic Paper Based Device Incorporated with Nanocrys of Zeolite –GO for Electrochemical Sensing of Date Rape Drug","authors":"Jagriti Narang ,&nbsp;Nitesh Malhotra ,&nbsp;Chaitali Singhal ,&nbsp;Ashish Mathur ,&nbsp;Dhritiman Chakraborty ,&nbsp;Aviraj Ingle ,&nbsp;C.S. Pundir","doi":"10.1016/j.protcy.2017.04.039","DOIUrl":"10.1016/j.protcy.2017.04.039","url":null,"abstract":"<div><p>The objective of the present invention is to develop an ultrasensitive technique for the electro analysis of rape drug. A paper chip (EμPADs) was developed using nanocrystals (Nanocrys) of graphene-oxide and zeolites (Zeo-GO). Nanocrys modified EμPAD showed wide linear range 0.001 - 5 nM/ml and low detection limit of 0.00002 nM/ml. The developed sensor was tested in real time samples like alcoholic and non-alcoholic drinks and found good correlation (99%). Extensive development can be made for industrial translation of this fabricated device.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90244537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Innovative Methods for the Integration of Immunosensors Based on Magnetic Nanoparticles in Lab-on-Chip 基于磁性纳米颗粒芯片的免疫传感器集成创新方法
Procedia Technology Pub Date : 2017-01-01 DOI: 10.1016/j.protcy.2017.04.088
Olivier Lefebvre , Fabrice Mbock Nkot , Claire Smadja , Emile Martincic , Marion Woytasik , Mehdi Ammar
{"title":"Innovative Methods for the Integration of Immunosensors Based on Magnetic Nanoparticles in Lab-on-Chip","authors":"Olivier Lefebvre ,&nbsp;Fabrice Mbock Nkot ,&nbsp;Claire Smadja ,&nbsp;Emile Martincic ,&nbsp;Marion Woytasik ,&nbsp;Mehdi Ammar","doi":"10.1016/j.protcy.2017.04.088","DOIUrl":"10.1016/j.protcy.2017.04.088","url":null,"abstract":"<div><p>Commonly immunoassay using magnetic nanoparticles (MNP) are performed under the control of permanent magnet close to the micro-tube of reaction<sup>1</sup>. Using a magnet gives a powerful method for driving MNP but remains unreliable or insufficient, for a fully integrated immunoassay on lab-on-chip. The aim of this study is to develop a novel lab-on-chip (Figure 1.B) for high efficient immunoassays to detect pathogenic bacteria with microcoils employed for trapping MNP during the biofunctionalization steps. Studies on bacteria are mainly based on E. Coly<sup>2,3</sup> which is a non-pathogenic bacteria and can be find everywhere. In our case we use ovalbumin which is defined as a biodefense model protein. The objectives are essentially to optimize their efficiency for biological recognition, by assuring a better bioactivity (antibodies-ovalbumin), and detect small concentrations of the targeted protein (∼10 pg/mL).</p><p>The fluidic microsystem is made of PDMS, which is micro-molded in SU8, it had channels with 50 μm height and 500 μm width. Microfluidic conditions permit a faster biofonctionnalisation step than in test tube and allow capture and detection of biological elements integrated in lab-on-chip.</p><p>Microcoils are electrodeposited on silicon using cupper. They are microfabricated with cupper wire of 10 μm height, 10 μm width, 10 μm space between wire and 45 spires. Microcoils are encapsulated in microfluidic chip by covering them with a spin-coated thin layers of PDMS. Microcoils give a local and efficient trapping of MNP and a fully integrated device.</p><p>Biological activity is studied respecting ELISA protocol with ovalbumin as protein of interest. To graft the primary antibody and protect the free area of MNP we used carboxylic as terminal group for grafting antibodies and BSA (Bovine Serum Albumin) for passivation (Figure 1.A). We characterize this method by measuring the intensity of the antibody of detection using FITC (Fluorescein isothiocynathe). Intensity is detected by fluorescent microscope connected to the microfluidic plateform and images are processed using a home-made script.</p><p>First we studied the response of immunoassays complex function of MNP size (200 nm, 300 nm and 500 nm), we confirmed that with a lower diameter we increase the intensity detected, following specific surface formula (1), (2), (3).<span><span><img></span></span></p><p>Regarding the magnetic force needed (depending of several parameters including magnetic field and parameters of the particle) and the intensity detected we selected 300 nm size of NPM.</p><p>We studied the response of immunoassays complex function of ovalbumin concentration. We realized different immunoassays by controlling MNP (Figure 1.C&amp;D) in test tube and in microfluidic device using a magnet. The comparison between these two experiments allow us to show an improved limit of detection (<em>L.O.D. = I</em><sub><em>0</em></sub> <em>– 3 × σ</em><sub><em>D</em></su","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82142647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信