Chemical record最新文献

筛选
英文 中文
Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water 磷基水溶性配体在促进水中催化反应中的普遍作用
IF 7 2区 化学
Chemical record Pub Date : 2024-08-20 DOI: 10.1002/tcr.202400057
Manisha A. Patel, Dr. Anant R. Kapdi
{"title":"Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water","authors":"Manisha A. Patel,&nbsp;Dr. Anant R. Kapdi","doi":"10.1002/tcr.202400057","DOIUrl":"10.1002/tcr.202400057","url":null,"abstract":"<p>Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C−C or C−X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis 用于诊断和治疗动脉粥样硬化的仿生纳米粒子。
IF 7 2区 化学
Chemical record Pub Date : 2024-08-15 DOI: 10.1002/tcr.202400087
Yan Wang, Yize Li, Yuqing Lu, Jingjing Li
{"title":"Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis","authors":"Yan Wang,&nbsp;Yize Li,&nbsp;Yuqing Lu,&nbsp;Jingjing Li","doi":"10.1002/tcr.202400087","DOIUrl":"10.1002/tcr.202400087","url":null,"abstract":"<p>Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Advances of Cathode Materials for Rechargeable Aluminum Batteries 可充电铝电池阴极材料的研究进展。
IF 7 2区 化学
Chemical record Pub Date : 2024-08-15 DOI: 10.1002/tcr.202400085
Yanhong Gao, Dan Zhang, Shengrui Zhang, Le Li
{"title":"Research Advances of Cathode Materials for Rechargeable Aluminum Batteries","authors":"Yanhong Gao,&nbsp;Dan Zhang,&nbsp;Shengrui Zhang,&nbsp;Le Li","doi":"10.1002/tcr.202400085","DOIUrl":"10.1002/tcr.202400085","url":null,"abstract":"<p>Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al<sup>3+</sup> ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials 磷杂环合成策略的进展:从合成到新兴光电材料的最新进展。
IF 7 2区 化学
Chemical record Pub Date : 2024-08-13 DOI: 10.1002/tcr.202400058
Deepika Thakur, Dr. Sushmita, Shivam A. Meena, Prof. Akhilesh K. Verma
{"title":"Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials","authors":"Deepika Thakur,&nbsp;Dr. Sushmita,&nbsp;Shivam A. Meena,&nbsp;Prof. Akhilesh K. Verma","doi":"10.1002/tcr.202400058","DOIUrl":"10.1002/tcr.202400058","url":null,"abstract":"<p>Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy 利用活性氮化合物实现氮循环经济。
IF 7 2区 化学
Chemical record Pub Date : 2024-08-02 DOI: 10.1002/tcr.202400094
Dr. Tatsuo Kimura
{"title":"Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy","authors":"Dr. Tatsuo Kimura","doi":"10.1002/tcr.202400094","DOIUrl":"10.1002/tcr.202400094","url":null,"abstract":"<p>Nitrogen oxides (NO<sub><i>x</i></sub>) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NO<sub><i>x</i></sub> to nitrogen (N<sub>2</sub>) and NO<sub><i>x</i></sub> storage reduction (NSR) to N<sub>2</sub> by injecting reducing agents like ammonia (NH<sub>3</sub>), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NO<sub><i>x</i></sub>. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (N<sub><i>r</i></sub>) compounds, mainly NO<sub><i>x</i></sub>, for encouraging an opening to consider nitrogen circular economy. For the recycling of NO<sub><i>x</i></sub> via NH<sub>3</sub>, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NO<sub><i>x</i></sub> containing oxidative gas and H<sub>2</sub> containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NO<sub><i>x</i></sub> higher than that of N<sub>2</sub>, this kind of NO<sub><i>x</i></sub> to NH<sub>3</sub> (NTA) process is promising for synthesizing NH<sub>3</sub>, being valuable not only as fertilizer but also as fuel in near future.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies 将农业残余物转化为增值产品:近期研究综述》。
IF 7 2区 化学
Chemical record Pub Date : 2024-07-25 DOI: 10.1002/tcr.202300333
Tuan-Dung Hoang, Dr. Nguyen Van Anh, Dr. Mohammad Yusuf, Dr. Muhammed Ali S. A, Yathavan Subramanian, Dr. Nguyen Hoang Nam, Dr. Nguyen Minh Ky, Dr. Van-Giang Le, Dr. Nguyen Thi Thanh Huyen, Alien Abi Bianasari, Dr. Abul K Azad
{"title":"Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies","authors":"Tuan-Dung Hoang,&nbsp;Dr. Nguyen Van Anh,&nbsp;Dr. Mohammad Yusuf,&nbsp;Dr. Muhammed Ali S. A,&nbsp;Yathavan Subramanian,&nbsp;Dr. Nguyen Hoang Nam,&nbsp;Dr. Nguyen Minh Ky,&nbsp;Dr. Van-Giang Le,&nbsp;Dr. Nguyen Thi Thanh Huyen,&nbsp;Alien Abi Bianasari,&nbsp;Dr. Abul K Azad","doi":"10.1002/tcr.202300333","DOIUrl":"10.1002/tcr.202300333","url":null,"abstract":"<p>Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to “value-added” products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold-Catalyzed Lactone Synthesis: Advancements and Insights 金催化内酯合成:进展与启示。
IF 7 2区 化学
Chemical record Pub Date : 2024-07-25 DOI: 10.1002/tcr.202400071
D. Ravi Sankar, Mohan Neetha, Prof. Dr. Gopinathan Anilkumar
{"title":"Gold-Catalyzed Lactone Synthesis: Advancements and Insights","authors":"D. Ravi Sankar,&nbsp;Mohan Neetha,&nbsp;Prof. Dr. Gopinathan Anilkumar","doi":"10.1002/tcr.202400071","DOIUrl":"10.1002/tcr.202400071","url":null,"abstract":"<p>Lactones represent a class of fundamental structural motifs ubiquitous in nature, holding significance across diverse scientific domains such as pharmaceuticals, natural products, drug discovery, and industry. Despite their simplicity, the synthesis of lactones has garnered considerable interest due to their pivotal roles. Gold, traditionally regarded as a noble metal, has emerged as an efficient catalyst, challenging conventional perceptions. The utilization of gold in lactone synthesis has captivated researchers, leading to the development of numerous effective methodologies. Motivated by this, we present a comprehensive compilation of reports on the gold-catalyzed synthesis of lactones, encompassing literature till date.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities 基于二维 MXene 的电催化剂:挑战与机遇。
IF 7 2区 化学
Chemical record Pub Date : 2024-07-23 DOI: 10.1002/tcr.202400047
Muhammad Kaleem Shabbir, Fozia Arif, Haleema Asghar, Sanam Irum Memon, Urooj Khanum, Javeed Akhtar, Akbar Ali, Zeeshan Ramzan, Aliya Aziz, Ayaz Ali Memon, Prof. Khalid Hussain Thebo
{"title":"Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities","authors":"Muhammad Kaleem Shabbir,&nbsp;Fozia Arif,&nbsp;Haleema Asghar,&nbsp;Sanam Irum Memon,&nbsp;Urooj Khanum,&nbsp;Javeed Akhtar,&nbsp;Akbar Ali,&nbsp;Zeeshan Ramzan,&nbsp;Aliya Aziz,&nbsp;Ayaz Ali Memon,&nbsp;Prof. Khalid Hussain Thebo","doi":"10.1002/tcr.202400047","DOIUrl":"10.1002/tcr.202400047","url":null,"abstract":"<p>MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis (Chem. Rec. 7/2024) 封面图片:用于光催化的六方氮化硼纳米材料的改性策略(Chem.)
IF 7 2区 化学
Chemical record Pub Date : 2024-07-22 DOI: 10.1002/tcr.202480701
Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li
{"title":"Cover Picture: Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis (Chem. Rec. 7/2024)","authors":"Dongao Liu,&nbsp;Yuqing Wang,&nbsp;Quanxin Gong,&nbsp;Yupeng Xia,&nbsp;Lei Li,&nbsp;Yuhua Xue,&nbsp;Junhe Yang,&nbsp;Shengjuan Li","doi":"10.1002/tcr.202480701","DOIUrl":"10.1002/tcr.202480701","url":null,"abstract":"<p>Despite initial skepticism, hexagonal boron nitride (h-BN) has become a promising photocatalyst due to its unique two-dimensional structure, remarkable stability, and potential for adjustability through various modification strategies. This review provides a comprehensive analysis of the inherent characteristics of h-BN-based nanomaterials, recent advancements in their environmental and energy applications, practical modification techniques, and the challenges and prospects in photocatalysis. More details can be found in article number e202300334 by Shengjuan Li and co-workers. (DOl: 10.1002/tcr.202300334.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202480701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges in Peptide Solubilization – Amyloids Case Study 多肽增溶面临的挑战--Amyloids 案例研究。
IF 7 2区 化学
Chemical record Pub Date : 2024-07-18 DOI: 10.1002/tcr.202400053
Oliwia Polańska, Dr. Natalia Szulc, Rafał Stottko, Mateusz Olek, Julita Nadwodna, Dr. Marlena Gąsior-Głogowska, Dr. Monika Szefczyk
{"title":"Challenges in Peptide Solubilization – Amyloids Case Study","authors":"Oliwia Polańska,&nbsp;Dr. Natalia Szulc,&nbsp;Rafał Stottko,&nbsp;Mateusz Olek,&nbsp;Julita Nadwodna,&nbsp;Dr. Marlena Gąsior-Głogowska,&nbsp;Dr. Monika Szefczyk","doi":"10.1002/tcr.202400053","DOIUrl":"10.1002/tcr.202400053","url":null,"abstract":"<p>Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信