Chemical recordPub Date : 2024-11-13DOI: 10.1002/tcr.202400050
Dr. Jeffrey I. Seeman
{"title":"Going Beyond Woodward and Hoffmann's Electrocyclizations and Cycloadditions: Sigmatropic Rearrangements**","authors":"Dr. Jeffrey I. Seeman","doi":"10.1002/tcr.202400050","DOIUrl":"10.1002/tcr.202400050","url":null,"abstract":"<p>On June 1, 1965, R. B. Woodward and Roald Hoffmann published their third communication in the <i>Journal of the American Chemical Society</i> in which they applied orbital symmetry control to explain the mechanism of a wide variety of valence isomerizations that they termed “sigmatropic reactions.” This publication reveals the research trajectory taken by Hoffmann from which this portion of the no-mechanism problem was solved. Hoffmann used five different quantum chemical tools, all based on either extended Hückel theoretical calculations or frontier molecular orbital theory, in his research. Hoffmann′s laboratory notebooks and his three draft manuscripts along with Woodward′s four subsequent drafts have survived the past 59 years and provide an excellent window into the thinking and manuscript-writing processes used by these Nobel laureates in February-April 1965.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-11DOI: 10.1002/tcr.202400185
Yujia Han, Hongyan Hao, Haixiang Zeng, Hongxia Li, Xiaohui Niu, Wei Qi, Deyi Zhang, Prof. Kunjie Wang
{"title":"Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications","authors":"Yujia Han, Hongyan Hao, Haixiang Zeng, Hongxia Li, Xiaohui Niu, Wei Qi, Deyi Zhang, Prof. Kunjie Wang","doi":"10.1002/tcr.202400185","DOIUrl":"10.1002/tcr.202400185","url":null,"abstract":"<p>The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-11DOI: 10.1002/tcr.202400183
Dr. Benjamin Mourot, Prof. Denis Jacquemin, Dr. Olivier Siri, Dr. Simon Pascal
{"title":"Coupled Polymethine Dyes: Six Decades of Discoveries","authors":"Dr. Benjamin Mourot, Prof. Denis Jacquemin, Dr. Olivier Siri, Dr. Simon Pascal","doi":"10.1002/tcr.202400183","DOIUrl":"10.1002/tcr.202400183","url":null,"abstract":"<p>This review provides a comprehensive examination of the applications of the seminal coupling principle introduced by Siegfried Dähne and Dieter Leupold in 1966. Their heuristic and groundbreaking work proposed that combining multiple polymethine subunits within a single chromophore enables orbital coupling, consequently narrowing the HOMO–LUMO gap, and yielding redshifted optical properties. These outcomes are particularly valuable for developing organic dyes tailored for visible-to-near-infrared applications. Despite their potential, coupled polymethines remain relatively underexplored, with most reported instances being serendipitous discoveries over the last six decades. In light of this, our review compiles and discusses the reported coupled polymethine structures, covering synthetic, spectroscopic, theoretical and applicative aspects, offering insights into the structure-property relationships of this unique class of dyes and perspectives for their future applications.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-11DOI: 10.1002/tcr.202400144
Al Mojahid Afridi, Mahbuba Aktary, Syed Shaheen Shah, Sharif Iqbal Mitu Sheikh, Gazi Jahirul Islam, M. Nasiruzzaman Shaikh, Md. Abdul Aziz
{"title":"Advancing Electrical Engineering with Biomass-derived Carbon Materials: Applications, Innovations, and Future Directions","authors":"Al Mojahid Afridi, Mahbuba Aktary, Syed Shaheen Shah, Sharif Iqbal Mitu Sheikh, Gazi Jahirul Islam, M. Nasiruzzaman Shaikh, Md. Abdul Aziz","doi":"10.1002/tcr.202400144","DOIUrl":"10.1002/tcr.202400144","url":null,"abstract":"<p>The ongoing global shift towards sustainability in electrical engineering necessitates novel materials that offer both ecological and technical benefits. Biomass-derived carbon materials (BCMs) are emerging as cornerstones in this transition due to their sustainability, cost-effectiveness, and versatile properties. This review explores the expansive role of BCMs across various electrical engineering applications, emphasizing their transformative impact and potential in fostering a sustainable technological ecosystem. The fundamentals of BCMs are investigated, including their unique structures, diverse synthesis procedures, and significant electrical and electrochemical properties. A detailed examination of recent innovations in BCM applications for energy storage, such as batteries and supercapacitors, and their pivotal role in developing advanced electronic components like sensors, detectors, and electromagnetic interference shielding composites has been covered. BCMs offer superior electrical conductivities, tunable surface chemistries, and mechanical properties compared to traditional carbon sources. These can be further enhanced through innovative doping and functionalization techniques. Moreover, this review identifies challenges related to scalability and uniformity in properties and proposes future research directions to overcome these hurdles. By integrating insights from recent studies with a forward-looking perspective, this paper sets the stage for the next generation of electrical engineering solutions powered by biomass-derived materials, aligning technological advancement with environmental stewardship.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-09DOI: 10.1002/tcr.202400164
An-Guo Wu, Jie Ding, Lan Zhao, Prof. Dr. Hong-Ru Li, Prof. Dr. Liang-Nian He
{"title":"Reductive Transformation of CO2 to Organic Compounds","authors":"An-Guo Wu, Jie Ding, Lan Zhao, Prof. Dr. Hong-Ru Li, Prof. Dr. Liang-Nian He","doi":"10.1002/tcr.202400164","DOIUrl":"10.1002/tcr.202400164","url":null,"abstract":"<p>Carbon dioxide is a major greenhouse gas and a safe, abundant, easily accessible, and renewable C1 resource that can be chemically converted into high value-added chemicals, fuels and materials. The preparation of urea, organic carbonates, salicylic acid, etc. from CO<sub>2</sub> through non-reduction conversion has been used in industrial production, while CO<sub>2</sub> reduction transformation has become a research hotspot in recent years due to its involvement in energy storage and product diversification. Designing suitable catalysts to achieve efficient and selective conversion of CO<sub>2</sub> is crucial due to its thermodynamic stability and kinetic inertness. From this perspective, the redistribution of charges within CO<sub>2</sub> molecules through the interaction of Lewis acid/base or metal complexes with CO<sub>2</sub>, or the forced transfer of electrons to CO<sub>2</sub> through photo- or electrocatalysis, is a commonly used effective way to activate CO<sub>2</sub>. Based on understanding of the activation/reaction mechanism on a molecular level, we have developed metal complexes, metal salts, inorganic/organic salts, ionic liquids, as well as nitrogen rich and porous materials as efficient catalysts for CO<sub>2</sub> reductive conversions. The goal of this personal account is to summarize the catalytic processes of CO<sub>2</sub> reductive conversion that have been developed in the past 7 years: 1) For the reductive functionalization of CO<sub>2</sub>, the major challenge lies in accurately adjusting reaction parameters (such as pressure) to achieve high catalytic efficiency and the product selectivity; 2) For photocatalytic or electrocatalytic reduction of CO<sub>2</sub>, how to suppress competitive hydrogen evolution reactions and improve catalyst stability are key points that requires continuous attention.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-09DOI: 10.1002/tcr.202400099
Xiran Li, Mengyuan Liu, Wenhan Li, Xin Wang, Shiyu Wang, Haoran Yin, Ning Yan, Xin Jin, Chaohe Yang
{"title":"Toward Sustainable Utilization and Production of Tartaric Acid","authors":"Xiran Li, Mengyuan Liu, Wenhan Li, Xin Wang, Shiyu Wang, Haoran Yin, Ning Yan, Xin Jin, Chaohe Yang","doi":"10.1002/tcr.202400099","DOIUrl":"10.1002/tcr.202400099","url":null,"abstract":"<p>Global efforts toward establishing a circular carbon economy have guided research interests towards exploring renewable technologies that can replace environmentally harmful fossil fuel-based production routes. In this context, sugar-based bio-derived substrates have been identified as renewable molecules for future implementation in chemical industries. Tartaric acid, a special C<sub>4</sub> bio-compound with two hydroxyl and carboxylic groups in the structure, displays great potential for the food, polymer, and pharmaceutical industries due to its unique biological reactivity and performance-enhancing properties. To this point, there has yet to be a comprehensive literature review and perspective on the applications and synthesis of tartaric acid. As such, we have conducted a detailed and thorough outlook and discussion in terms of biological activity, organic synthesis, catalysis, structural characterization and synthetic routes. Lastly, we provide a critical discussion on the applications and synthesis of tartaric acid to give our insights into developing sustainable chemical technologies for the future.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 11","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-07DOI: 10.1002/tcr.202400110
Suleiman Magaji, Ijaz Hussain, Zuhair Malaibari, Mohammad M. Hossain, Ziyauddin S. Qureshi, Shakeel Ahmed
{"title":"Catalytic Cracking of Liquefied Petroleum Gas (LPG) to Light Olefins Using Zeolite-Based Materials: Recent Advances, Trends, Challenges and Future Perspectives","authors":"Suleiman Magaji, Ijaz Hussain, Zuhair Malaibari, Mohammad M. Hossain, Ziyauddin S. Qureshi, Shakeel Ahmed","doi":"10.1002/tcr.202400110","DOIUrl":"10.1002/tcr.202400110","url":null,"abstract":"<p>The catalytic cracking of liquefied petroleum gas (LPG) has attracted significant attention due to its importance in producing valuable feedstocks for the petrochemical industry. This review provides an overview of recent developments in zeolite-based catalyst technology for converting LPG into light olefins. Catalytic cracking utilizes zeolite-based catalysts usually associated with stability challenges, such as coking and sintering. The discussion focused on the underlying mechanisms that govern the catalytic cracking process and provided insights into the complex reaction pathways involved. A comprehensive analysis of various strategies employed for improving the effectiveness of zeolite catalysts has been discussed in this review. These strategies encompass using transition metals to modify catalyst properties, treatments involving phosphorous modification, alkaline earth metals, and alkali metals to alter the acidity level of the zeolites. The elucidation of the impact of silica-to-alumina ratios in zeolites and the development of hierarchical zeolite-based catalysts through top-down and bottom-up methodologies are also discussed.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 11","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-05DOI: 10.1002/tcr.202400132
João Marcos Anghinoni, Irum, Haroon Ur Rashid, Eder João Lenardão, Márcio Santos Silva
{"title":"31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds","authors":"João Marcos Anghinoni, Irum, Haroon Ur Rashid, Eder João Lenardão, Márcio Santos Silva","doi":"10.1002/tcr.202400132","DOIUrl":"10.1002/tcr.202400132","url":null,"abstract":"<p><sup>31</sup>P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, <sup>31</sup>P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the <sup>31</sup>P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of <sup>31</sup>P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-05DOI: 10.1002/tcr.202400162
Min Luo, Fu-kun Zhao, Yuan-min Wang, Yong Luo
{"title":"Nanomotors as Therapeutic Agents: Advancing Treatment Strategies for Inflammation-Related Diseases","authors":"Min Luo, Fu-kun Zhao, Yuan-min Wang, Yong Luo","doi":"10.1002/tcr.202400162","DOIUrl":"10.1002/tcr.202400162","url":null,"abstract":"<p>Inflammation is a physiological response of the body to harmful stimuli such as pathogens, damaged cells, or irritants, involving a series of cellular and molecular events. It is associated with various diseases including neurodegenerative disorders, cancer, and atherosclerosis, and is a leading cause of global mortality. Key inflammatory factors, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1/CCL2), RANTES (CCL5), and prostaglandins, play central roles in inflammation and disease progression. Traditional treatments such as NSAIDs, steroids, biologic agents, and antioxidants have limitations. Recent advancements in nanomaterials present promising solutions for treating inflammation-related diseases. Unlike nanomaterials that rely on passive targeting and face challenges in precise drug delivery, nanomotors, driven by chemical or optical stimuli, offer a more dynamic approach by actively navigating to inflammation sites, thereby enhancing drug delivery efficiency and therapeutic outcomes. Nanomotors allow for controlled drug release in response to specific environmental changes, such as pH and inflammatory factors, ensuring effective drug concentrations at disease sites. This active targeting capability enables the use of smaller drug doses, which reduces overall drug usage, costs, and potential side effects compared to traditional treatments. By improving precision and efficiency, nanomotors address the limitations of conventional therapies and represent a significant advancement in the treatment of inflammation-related diseases. This review summarizes the latest research on nanomotor-mediated treatment of inflammation-related diseases and discusses the challenges and future directions for optimizing their clinical translation.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-11-05DOI: 10.1002/tcr.202400148
Giovanna Scalli Tâmega, Mateus Oliveira Costa, Ariel de Araujo Pereira, Prof. Dr. Marco Antonio Barbosa Ferreira
{"title":"Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction","authors":"Giovanna Scalli Tâmega, Mateus Oliveira Costa, Ariel de Araujo Pereira, Prof. Dr. Marco Antonio Barbosa Ferreira","doi":"10.1002/tcr.202400148","DOIUrl":"10.1002/tcr.202400148","url":null,"abstract":"<p>Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional mechanistic investigations are labor-intensive and rely on experimental kinetic, thermodynamic, and spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using experimental constants or incorporating comprehensive experimental data. Data-driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting and interpreting mechanisms and effectively handling complex reactivities through multiparameter strategies. This review explores selected examples of data-driven strategies for investigating organic reaction mechanisms. It highlights the evolution and application of computational descriptors for mechanistic inference.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}