Chemical recordPub Date : 2024-07-12DOI: 10.1002/tcr.202400055
Pooja, Sarita Yadav, Ravinder Pawar
{"title":"Chemistry of Cyclo[18]Carbon (C18): A Review","authors":"Pooja, Sarita Yadav, Ravinder Pawar","doi":"10.1002/tcr.202400055","DOIUrl":"10.1002/tcr.202400055","url":null,"abstract":"<p>Carbon-based allotropes are propelling a technological revolution in communication, sensing, and computing, concurrently challenging fundamental theories of the previous century. Nevertheless, the demand for advanced carbon-based materials remains substantial. The crux lies in the efficient and reliable engineering of novel carbon allotrope. Although C<sub>18</sub> has undergone theoretical and experimental investigation for an extended period, its preparation and direct observation in the condensed phase occurred only recently through STM/AFM techniques. The distinctive cyclic ring structure and the dual 18-center π delocalization character introduce various uncommon properties to C<sub>18</sub>, rendering it a subject worthy of in-depth exploration. In this context, this review delves into past developments contributing to the state-of-the-art understanding of C<sub>18</sub> and provides insights into how future endeavours can expedite practical applications. Encompassing a broad spectrum, this review comprehensively investigates almost all facets of C<sub>18</sub>, including geometric characteristics, electron delocalization, bonding nature, aromaticity, reactivity, electronic excitation, UV/Vis spectrum, intermolecular interaction, response to external fields, electron affinity, ionization, and other molecular properties. Moreover, the review also outlines representative strategies for the direct synthesis and characterization of C<sub>18</sub> using atom manipulation techniques. Following this, C<sub>18</sub>-based complexes are summarized, and potential applications in catalysis, electrochemical devices, optoelectronics, and sensing are discussed.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-07-10DOI: 10.1002/tcr.202400069
Fatemeh Doraghi, Mohammad Sadegh Karimtabar, Mehran Ghasemi, Bagher Larijani, Mohammad Mahdavi
{"title":"Transition Metal-Catalyzed Dual C−H Activation/Annulation Reactions Involving Internal Alkynes","authors":"Fatemeh Doraghi, Mohammad Sadegh Karimtabar, Mehran Ghasemi, Bagher Larijani, Mohammad Mahdavi","doi":"10.1002/tcr.202400069","DOIUrl":"10.1002/tcr.202400069","url":null,"abstract":"<p>Recently, transition metal-catalyzed <i>ortho</i>-C−H bond activation/annulations involving two internal alkyne molecules have been extensively used to synthesize highly substituted polycyclic aromatic scaffolds. Such reactions have emerged as a powerful atom and step-economical strategy for the assembly of multifunctional bioactive molecules. In this context, we focused on the recent achievements of dual C−H bond activation/annulations, as well as functionalization reactions involving diaryl/alkyl alkynes.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-07-10DOI: 10.1002/tcr.202300334
Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li
{"title":"Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis","authors":"Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li","doi":"10.1002/tcr.202300334","DOIUrl":"10.1002/tcr.202300334","url":null,"abstract":"<p>Although hexagonal boron nitride (h-BN) was initially considered a less promising photocatalyst due to its large band gap and apparent chemical inertness, its unique two-dimensional lamellar structure coupled with high stability and environmental friendliness, as the second largest van der Waals material after graphene, provides a unique platform for photocatalytic innovation. This review not only highlights the intrinsic qualities of h-BN with photocatalytic potentials, such as high stability, environmental compatibility, and tunable bandgap through various modification strategies but also provides a comprehensive overview of the recent advances in h-BN-based nanomaterials for environmental and energy applications, as well as an in-depth description of the modification methods and fundamental properties for these applications. In addition, we discuss the challenges and prospects of h-BN-based nanomaterials for future photocatalysis.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-07-10DOI: 10.1002/tcr.202300347
Dr. Bhavya Deepthi Sadanala, Dr. Rajiv Trivedi
{"title":"Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities","authors":"Dr. Bhavya Deepthi Sadanala, Dr. Rajiv Trivedi","doi":"10.1002/tcr.202300347","DOIUrl":"10.1002/tcr.202300347","url":null,"abstract":"<p>The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-07-08DOI: 10.1002/tcr.202400044
Roberto do Carmo Pinheiro, Luiza Souza Marques, Juliano Ten Kathen Jung, Cristina Wayne Nogueira, Gilson Zeni
{"title":"Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides","authors":"Roberto do Carmo Pinheiro, Luiza Souza Marques, Juliano Ten Kathen Jung, Cristina Wayne Nogueira, Gilson Zeni","doi":"10.1002/tcr.202400044","DOIUrl":"10.1002/tcr.202400044","url":null,"abstract":"<p>Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-07-02DOI: 10.1002/tcr.202300369
Mahmood Hassan Akhtar, Muhammad Azhar Hayat Nawaz, Manzar Abbas, Ning Liu, Wenzhao Han, Yan Lv, Cong Yu
{"title":"Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts","authors":"Mahmood Hassan Akhtar, Muhammad Azhar Hayat Nawaz, Manzar Abbas, Ning Liu, Wenzhao Han, Yan Lv, Cong Yu","doi":"10.1002/tcr.202300369","DOIUrl":"10.1002/tcr.202300369","url":null,"abstract":"<p>pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers’ interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-06-26DOI: 10.1002/tcr.202480601
Tiantian Zhang, Prof. Huangdi Feng
{"title":"Cover Picture: Skeletal Editing of Isatins for Heterocycle Molecular Diversity (Chem. Rec. 6/2024)","authors":"Tiantian Zhang, Prof. Huangdi Feng","doi":"10.1002/tcr.202480601","DOIUrl":"https://doi.org/10.1002/tcr.202480601","url":null,"abstract":"<p>The cover picture shows the progress in the skeletal editing of the isatin scaffold in the last decade (2013-2023). A series of ring-expansion reactions for the construction of high-value heterocycles (quinolines, quinolones, polycyclic quinazolines, medium-sized compounds), as well as a variety of ring-opening strategies for the generation of the 2-(azoly)anilines by cleavage of the C−C bond and the C−N bond are revealed. More details can be found in article number e202400024 by Tiantian Zhang and Huangdi Feng (DOl: 10.1002/tcr.202400024.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 6","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202480601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-06-14DOI: 10.1002/tcr.202400043
Hamid Ilbeygi, Juhana Jaafar
{"title":"Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications","authors":"Hamid Ilbeygi, Juhana Jaafar","doi":"10.1002/tcr.202400043","DOIUrl":"10.1002/tcr.202400043","url":null,"abstract":"<p>Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 6","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202400043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoluminescence of Platinum(II) Complexes with Diazine-Based Ligands","authors":"Mariia Hruzd, Raphaël Durand, Sébastien Gauthier, Pascal le Poul, Françoise Robin-le Guen, Sylvain Achelle","doi":"10.1002/tcr.202300335","DOIUrl":"10.1002/tcr.202300335","url":null,"abstract":"<p>In the last past twenty years, research on luminescent platinum (II) complexes has been intensively developed for useful application such as organic light emitting diodes (OLEDs). More recently, new photoluminescent complexes based on diazine ligands (pyrimidine, pyrazine, pyridazine, quinazoline and quinoxaline) have been developed in this context. This review will summarize the photophysical properties of most of the phosphorescent diazine Pt(II) complexes described in the literature and compare the results to pyridine analogues whenever possible. Based on the emission color, and the photoluminescence quantum yield (PLQY) values, the relationship between structure modification, and photophysical properties are highlighted. Tuning of emission color, quantum yields in solution and solid state and, for some complexes, aggregation induced emission (AIE) or thermally activated delayed fluorescence (TADF) properties are described. When emitting OLEDs have been built from diazine Pt(II) complexes, the external quantum efficiency (EQE) values and luminance for different emission wavelengths and in some cases, chromaticity coordinates obtained from devices, are given. Finally, this review highlights the growing interest in studies of new luminescent diazine Pt(II) complexes for OLED applications.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 6","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202300335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical recordPub Date : 2024-06-07DOI: 10.1002/tcr.202400024
Tiantian Zhang, Prof. Huangdi Feng
{"title":"Skeletal Editing of Isatins for Heterocycle Molecular Diversity","authors":"Tiantian Zhang, Prof. Huangdi Feng","doi":"10.1002/tcr.202400024","DOIUrl":"10.1002/tcr.202400024","url":null,"abstract":"<p>Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013−2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C−C bond and C−N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 6","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}