{"title":"Mesure d'indépendance linéaire de logarithmes dans un groupe algébrique commutatif","authors":"Éric Gaudron","doi":"10.1016/S0764-4442(01)02190-5","DOIUrl":"10.1016/S0764-4442(01)02190-5","url":null,"abstract":"<div><p>We obtain some new results in the theory of linear forms in logarithms on a commutative algebraic group, defined over <span><math><mtext>Q</mtext></math></span>. We generalize recent progress of S. David and N. Hirata [1]. In particular, we achieve an optimal linear independence measure in the height of the linear form and a measure more precise than Hirata's [4] for parameters related to the logarithms. The proof rests on Baker's method and a new argument of arithmetical nature.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1059-1064"},"PeriodicalIF":0.0,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02190-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80392270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilisation frontière du système de l'élasticité linéaire anisotrope","authors":"Rabah Bey , Amar Heminna , Jean-Pierre Lohéac","doi":"10.1016/S0764-4442(01)02194-2","DOIUrl":"10.1016/S0764-4442(01)02194-2","url":null,"abstract":"<div><p>In this paper, we extend to anisotropic case with variable coefficients the boundary stabilization result obtained in [2]. We use as a main tool local coordinates in the expression of boundary integrals. Our conditions are purely geometrical and few restrictive.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1083-1088"},"PeriodicalIF":0.0,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02194-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79692808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"W1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H1/2","authors":"Fabrice Bethuel , Jean Bourgain , Haı̈m Brezis , Giandomenico Orlandi","doi":"10.1016/S0764-4442(01)02191-7","DOIUrl":"10.1016/S0764-4442(01)02191-7","url":null,"abstract":"<div><p>We consider complex-valued solutions <em>u</em><sub><em>ε</em></sub> of the Ginzburg–Landau on a smooth bounded simply connected domain <span><math><mtext>Ω</mtext></math></span> of <span><math><mtext>R</mtext><msup><mi></mi><mn>N</mn></msup></math></span>, <em>N</em>⩾2 (here <em>ε</em> is a parameter between 0 and 1). We assume that <em>u</em><sub><em>ε</em></sub>=<em>g</em><sub><em>ε</em></sub> on <span><math><mtext>∂Ω</mtext></math></span>, where |<em>g</em><sub><em>ε</em></sub>|=1 and <em>g</em><sub><em>ε</em></sub> is uniformly bounded in <span><math><mtext>H</mtext><msup><mi></mi><mn>1/2</mn></msup><mtext>(∂Ω)</mtext></math></span>. We also assume that the Ginzburg–Landau energy <em>E</em><sub><em>ε</em></sub>(<em>u</em><sub><em>ε</em></sub>) is bounded by <em>M</em><sub>0</sub>|log<em>ε</em>|, where <em>M</em><sub>0</sub> is some given constant. We establish, for every 1⩽<em>p</em><<em>N</em>/(<em>N</em>−1), uniform W<sup>1,<em>p</em></sup> bounds for <em>u</em><sub><em>ε</em></sub> (independent of <em>ε</em>). These types of estimates play a central role in the asymptotic analysis of <em>u</em><sub><em>ε</em></sub> as <em>ε</em>→0.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1069-1076"},"PeriodicalIF":0.0,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02191-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85617140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffusion des ondes par une violation de la causalité","authors":"Alain Bachelot","doi":"10.1016/S0764-4442(01)02193-0","DOIUrl":"10.1016/S0764-4442(01)02193-0","url":null,"abstract":"<div><p>We introduce a class of four dimensional Lorentzian manifolds with closed curves of null type or timelike. We investigate some global problems for the wave equation: global Cauchy problem and asymptotic completeness of the wave operators for the chronological but non-causal metrics; uniqueness of solution with data on a changing type hypersurface; existence of resonant states; scattering by a violation of the chronology; poles of the scattering matrix.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1065-1068"},"PeriodicalIF":0.0,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02193-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90055225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Le problème de la réalisation minimale dans le demi-anneau max-plus et le problème de Pisot sont NP-durs∗","authors":"Vincent D. Blondel , Natacha Portier","doi":"10.1016/S0764-4442(01)02192-9","DOIUrl":"10.1016/S0764-4442(01)02192-9","url":null,"abstract":"<div><p>We prove the <em>NP</em>-hardness of two problems. The first is the well-known minimal realization problem in the max-plus semiring. The second problem (Pisot's problem) is the problem of determining if a given integer linear recurrent sequence has a zero coefficient.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1127-1130"},"PeriodicalIF":0.0,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02192-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85486935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Poincaré inequalities on loop spaces","authors":"Andreas Eberle","doi":"10.1016/S0764-4442(01)02174-7","DOIUrl":"10.1016/S0764-4442(01)02174-7","url":null,"abstract":"<div><p>Let <em>M</em> be a compact connected Riemannian manifold, and fix <em>x</em>,<em>y</em>∈<em>M</em>. For a sufficiently small constant <em>R</em>>0, Poincaré inequalities w.r.t. pinned Wiener measure with time parameter <em>T</em>>0 are proven on the sets <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>, <span><math><mtext>N∈</mtext><mtext>N</mtext></math></span>, consisting of all continuous paths <em>ω</em>:[0,1]→<em>M</em> such that <em>ω</em>(0)=<em>x</em>, <em>ω</em>(1)=<em>y</em>, and <em>d</em>(<em>ω</em>(<em>s</em>),<em>ω</em>(<em>t</em>))<<em>R</em> if <em>s</em>,<em>t</em>∈[(<em>i</em>−1)/<em>N</em>,<em>i</em>/<em>N</em>] for some integer <em>i</em>. Moreover, the asymptotic behaviour of the best constants in the Poincaré inequalities as <em>T</em> goes to 0 is studied. It turns out that the asymptotic depends crucially on the Riemannian metric on <em>M</em> and, in particular, on the geodesics contained in <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>. Key ingredients in the proofs are a bisection argument, estimates for finite-dimensional spectral gaps, and a crucial variance estimate by Malliavin and Stroock.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1023-1028"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02174-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72453907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time reversal for classical waves in random media","authors":"Guillaume Bal , Leonid Ryzhik","doi":"10.1016/S0764-4442(01)02177-2","DOIUrl":"10.1016/S0764-4442(01)02177-2","url":null,"abstract":"<div><p>We propose a mathematical theory for the refocusing properties observed in time-reversal experiments, where classical waves propagate through a medium, are recorded in time, then time-reversed and sent back into the medium. The salient feature of such experiments is that the refocusing quality of the time-reversed reemitted signals is greatly enhanced when the underlying medium is heterogeneous. Based on the Wigner transform formalism, we show that random media indeed greatly improve refocusing. We analyze two different types of random media, where in the limit of high frequencies, the Wigner transform satisfies a random Liouville equation or a linear transport equation.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1041-1046"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02177-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82687314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"D-PANA: a convergent block-relaxation solution method for the discretized dual formulation of the Signorini–Coulomb contact problem†","authors":"Paolo Bisegna , Frédéric Lebon , Franco Maceri","doi":"10.1016/S0764-4442(01)02153-X","DOIUrl":"10.1016/S0764-4442(01)02153-X","url":null,"abstract":"<div><p>Signorini's law of unilateral contact and Coulomb's friction law constitute a simple and useful framework for the analysis of unilateral frictional contact problems of a linearly elastic body with a rigid support. For quasi-static, monotone-loadings, the discrete dual formulation of this problem leads to a quasi-variational inequality, whose unknowns, after condensation, are the normal and tangential contact forces at nodes of the initial contact area. A new block-relaxation solution technique is proposed here. At the typical iteration step, shown to be a contraction for small friction coefficients, two quadratic programming problems are solved one after the other: the former is a friction problem with given normal forces, the latter is a unilateral contact problem with prescribed tangential forces. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1053-1058"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02153-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89354535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups","authors":"Daniel Neuenschwander","doi":"10.1016/S0764-4442(01)02164-4","DOIUrl":"10.1016/S0764-4442(01)02164-4","url":null,"abstract":"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1029-1034"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82359068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the recurrence of random walks on Z in random medium","authors":"Julien Bremont","doi":"10.1016/S0764-4442(01)02173-5","DOIUrl":"10.1016/S0764-4442(01)02173-5","url":null,"abstract":"<div><p>We study random walks on <span><math><mtext>Z</mtext></math></span> in a stationary random medium, defined by an ergodic dynamical system, when the possible jumps are {0,±1,±2}. We give a simple proof of a recurrence criterion of the same kind as Key's [6]. We show that the intermediate Lyapunov exponent involved in the criterion is always simple.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1011-1016"},"PeriodicalIF":0.0,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02173-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76528756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}