{"title":"h /2中边界数据下Ginzburg-Landau方程解的W1,p估计","authors":"Fabrice Bethuel , Jean Bourgain , Haı̈m Brezis , Giandomenico Orlandi","doi":"10.1016/S0764-4442(01)02191-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider complex-valued solutions <em>u</em><sub><em>ε</em></sub> of the Ginzburg–Landau on a smooth bounded simply connected domain <span><math><mtext>Ω</mtext></math></span> of <span><math><mtext>R</mtext><msup><mi></mi><mn>N</mn></msup></math></span>, <em>N</em>⩾2 (here <em>ε</em> is a parameter between 0 and 1). We assume that <em>u</em><sub><em>ε</em></sub>=<em>g</em><sub><em>ε</em></sub> on <span><math><mtext>∂Ω</mtext></math></span>, where |<em>g</em><sub><em>ε</em></sub>|=1 and <em>g</em><sub><em>ε</em></sub> is uniformly bounded in <span><math><mtext>H</mtext><msup><mi></mi><mn>1/2</mn></msup><mtext>(∂Ω)</mtext></math></span>. We also assume that the Ginzburg–Landau energy <em>E</em><sub><em>ε</em></sub>(<em>u</em><sub><em>ε</em></sub>) is bounded by <em>M</em><sub>0</sub>|log<em>ε</em>|, where <em>M</em><sub>0</sub> is some given constant. We establish, for every 1⩽<em>p</em><<em>N</em>/(<em>N</em>−1), uniform W<sup>1,<em>p</em></sup> bounds for <em>u</em><sub><em>ε</em></sub> (independent of <em>ε</em>). These types of estimates play a central role in the asymptotic analysis of <em>u</em><sub><em>ε</em></sub> as <em>ε</em>→0.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1069-1076"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02191-7","citationCount":"14","resultStr":"{\"title\":\"W1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H1/2\",\"authors\":\"Fabrice Bethuel , Jean Bourgain , Haı̈m Brezis , Giandomenico Orlandi\",\"doi\":\"10.1016/S0764-4442(01)02191-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider complex-valued solutions <em>u</em><sub><em>ε</em></sub> of the Ginzburg–Landau on a smooth bounded simply connected domain <span><math><mtext>Ω</mtext></math></span> of <span><math><mtext>R</mtext><msup><mi></mi><mn>N</mn></msup></math></span>, <em>N</em>⩾2 (here <em>ε</em> is a parameter between 0 and 1). We assume that <em>u</em><sub><em>ε</em></sub>=<em>g</em><sub><em>ε</em></sub> on <span><math><mtext>∂Ω</mtext></math></span>, where |<em>g</em><sub><em>ε</em></sub>|=1 and <em>g</em><sub><em>ε</em></sub> is uniformly bounded in <span><math><mtext>H</mtext><msup><mi></mi><mn>1/2</mn></msup><mtext>(∂Ω)</mtext></math></span>. We also assume that the Ginzburg–Landau energy <em>E</em><sub><em>ε</em></sub>(<em>u</em><sub><em>ε</em></sub>) is bounded by <em>M</em><sub>0</sub>|log<em>ε</em>|, where <em>M</em><sub>0</sub> is some given constant. We establish, for every 1⩽<em>p</em><<em>N</em>/(<em>N</em>−1), uniform W<sup>1,<em>p</em></sup> bounds for <em>u</em><sub><em>ε</em></sub> (independent of <em>ε</em>). These types of estimates play a central role in the asymptotic analysis of <em>u</em><sub><em>ε</em></sub> as <em>ε</em>→0.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1069-1076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02191-7\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
W1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H1/2
We consider complex-valued solutions uε of the Ginzburg–Landau on a smooth bounded simply connected domain of , N⩾2 (here ε is a parameter between 0 and 1). We assume that uε=gε on , where |gε|=1 and gε is uniformly bounded in . We also assume that the Ginzburg–Landau energy Eε(uε) is bounded by M0|logε|, where M0 is some given constant. We establish, for every 1⩽p<N/(N−1), uniform W1,p bounds for uε (independent of ε). These types of estimates play a central role in the asymptotic analysis of uε as ε→0.