h /2中边界数据下Ginzburg-Landau方程解的W1,p估计

Fabrice Bethuel , Jean Bourgain , Haı̈m Brezis , Giandomenico Orlandi
{"title":"h /2中边界数据下Ginzburg-Landau方程解的W1,p估计","authors":"Fabrice Bethuel ,&nbsp;Jean Bourgain ,&nbsp;Haı̈m Brezis ,&nbsp;Giandomenico Orlandi","doi":"10.1016/S0764-4442(01)02191-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider complex-valued solutions <em>u</em><sub><em>ε</em></sub> of the Ginzburg–Landau on a smooth bounded simply connected domain <span><math><mtext>Ω</mtext></math></span> of <span><math><mtext>R</mtext><msup><mi></mi><mn>N</mn></msup></math></span>, <em>N</em>⩾2 (here <em>ε</em> is a parameter between 0 and 1). We assume that <em>u</em><sub><em>ε</em></sub>=<em>g</em><sub><em>ε</em></sub> on <span><math><mtext>∂Ω</mtext></math></span>, where |<em>g</em><sub><em>ε</em></sub>|=1 and <em>g</em><sub><em>ε</em></sub> is uniformly bounded in <span><math><mtext>H</mtext><msup><mi></mi><mn>1/2</mn></msup><mtext>(∂Ω)</mtext></math></span>. We also assume that the Ginzburg–Landau energy <em>E</em><sub><em>ε</em></sub>(<em>u</em><sub><em>ε</em></sub>) is bounded by <em>M</em><sub>0</sub>|log<em>ε</em>|, where <em>M</em><sub>0</sub> is some given constant. We establish, for every 1⩽<em>p</em>&lt;<em>N</em>/(<em>N</em>−1), uniform W<sup>1,<em>p</em></sup> bounds for <em>u</em><sub><em>ε</em></sub> (independent of <em>ε</em>). These types of estimates play a central role in the asymptotic analysis of <em>u</em><sub><em>ε</em></sub> as <em>ε</em>→0.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1069-1076"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02191-7","citationCount":"14","resultStr":"{\"title\":\"W1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H1/2\",\"authors\":\"Fabrice Bethuel ,&nbsp;Jean Bourgain ,&nbsp;Haı̈m Brezis ,&nbsp;Giandomenico Orlandi\",\"doi\":\"10.1016/S0764-4442(01)02191-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider complex-valued solutions <em>u</em><sub><em>ε</em></sub> of the Ginzburg–Landau on a smooth bounded simply connected domain <span><math><mtext>Ω</mtext></math></span> of <span><math><mtext>R</mtext><msup><mi></mi><mn>N</mn></msup></math></span>, <em>N</em>⩾2 (here <em>ε</em> is a parameter between 0 and 1). We assume that <em>u</em><sub><em>ε</em></sub>=<em>g</em><sub><em>ε</em></sub> on <span><math><mtext>∂Ω</mtext></math></span>, where |<em>g</em><sub><em>ε</em></sub>|=1 and <em>g</em><sub><em>ε</em></sub> is uniformly bounded in <span><math><mtext>H</mtext><msup><mi></mi><mn>1/2</mn></msup><mtext>(∂Ω)</mtext></math></span>. We also assume that the Ginzburg–Landau energy <em>E</em><sub><em>ε</em></sub>(<em>u</em><sub><em>ε</em></sub>) is bounded by <em>M</em><sub>0</sub>|log<em>ε</em>|, where <em>M</em><sub>0</sub> is some given constant. We establish, for every 1⩽<em>p</em>&lt;<em>N</em>/(<em>N</em>−1), uniform W<sup>1,<em>p</em></sup> bounds for <em>u</em><sub><em>ε</em></sub> (independent of <em>ε</em>). These types of estimates play a central role in the asymptotic analysis of <em>u</em><sub><em>ε</em></sub> as <em>ε</em>→0.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1069-1076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02191-7\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们在RN, N大于或等于2的光滑有界单连通域Ω上考虑Ginzburg-Landau的复值解uε(这里ε是0和1之间的参数)。我们假设在∂Ω上uε=gε,其中|gε|=1并且gε在H1/2(∂Ω)中均匀有界。我们还假设金兹堡-朗道能量Eε(uε)以M0|logε|为界,其中M0是某个给定常数。对于每1个N/(N−1),我们建立了统一的W1, uε的p界(与ε无关)。这类估计在ε→0时的渐近分析中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
W1,p estimates for solutions to the Ginzburg–Landau equation with boundary data in H1/2

We consider complex-valued solutions uε of the Ginzburg–Landau on a smooth bounded simply connected domain Ω of RN, N⩾2 (here ε is a parameter between 0 and 1). We assume that uε=gε on ∂Ω, where |gε|=1 and gε is uniformly bounded in H1/2(∂Ω). We also assume that the Ginzburg–Landau energy Eε(uε) is bounded by M0|logε|, where M0 is some given constant. We establish, for every 1⩽p<N/(N−1), uniform W1,p bounds for uε (independent of ε). These types of estimates play a central role in the asymptotic analysis of uε as ε→0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信