指数李群的单连通幂零离散子群上的概率测度三角系统

Daniel Neuenschwander
{"title":"指数李群的单连通幂零离散子群上的概率测度三角系统","authors":"Daniel Neuenschwander","doi":"10.1016/S0764-4442(01)02164-4","DOIUrl":null,"url":null,"abstract":"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1029-1034"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4","citationCount":"1","resultStr":"{\"title\":\"Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups\",\"authors\":\"Daniel Neuenschwander\",\"doi\":\"10.1016/S0764-4442(01)02164-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 11\",\"pages\":\"Pages 1029-1034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于单连通幂零李群G,我们证明了G上对称概率测度的无穷小三角系统Δ的极限律是无限可除的,即使Δ不可交换。如果Δ的测度被某个固定的离散子群Γ∧G支持,也是如此。在指数李群的离散子群情况下,给出了伴随律定理的wenn条件的弱化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups

For simply connected nilpotent Lie groups G, we show that limit laws of infinitesimal triangular systems Δ of symmetric probability measures on G are infinitely divisible even if Δ is not commutative. The same holds also if the measures of Δ are supported by some fixed discrete subgroup ΓG. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信