{"title":"指数李群的单连通幂零离散子群上的概率测度三角系统","authors":"Daniel Neuenschwander","doi":"10.1016/S0764-4442(01)02164-4","DOIUrl":null,"url":null,"abstract":"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1029-1034"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4","citationCount":"1","resultStr":"{\"title\":\"Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups\",\"authors\":\"Daniel Neuenschwander\",\"doi\":\"10.1016/S0764-4442(01)02164-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 11\",\"pages\":\"Pages 1029-1034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups
For simply connected nilpotent Lie groups G, we show that limit laws of infinitesimal triangular systems Δ of symmetric probability measures on G are infinitely divisible even if Δ is not commutative. The same holds also if the measures of Δ are supported by some fixed discrete subgroup Γ⊂G. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.