{"title":"Local Poincaré inequalities on loop spaces","authors":"Andreas Eberle","doi":"10.1016/S0764-4442(01)02174-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>M</em> be a compact connected Riemannian manifold, and fix <em>x</em>,<em>y</em>∈<em>M</em>. For a sufficiently small constant <em>R</em>>0, Poincaré inequalities w.r.t. pinned Wiener measure with time parameter <em>T</em>>0 are proven on the sets <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>, <span><math><mtext>N∈</mtext><mtext>N</mtext></math></span>, consisting of all continuous paths <em>ω</em>:[0,1]→<em>M</em> such that <em>ω</em>(0)=<em>x</em>, <em>ω</em>(1)=<em>y</em>, and <em>d</em>(<em>ω</em>(<em>s</em>),<em>ω</em>(<em>t</em>))<<em>R</em> if <em>s</em>,<em>t</em>∈[(<em>i</em>−1)/<em>N</em>,<em>i</em>/<em>N</em>] for some integer <em>i</em>. Moreover, the asymptotic behaviour of the best constants in the Poincaré inequalities as <em>T</em> goes to 0 is studied. It turns out that the asymptotic depends crucially on the Riemannian metric on <em>M</em> and, in particular, on the geodesics contained in <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>. Key ingredients in the proofs are a bisection argument, estimates for finite-dimensional spectral gaps, and a crucial variance estimate by Malliavin and Stroock.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1023-1028"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02174-7","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Let M be a compact connected Riemannian manifold, and fix x,y∈M. For a sufficiently small constant R>0, Poincaré inequalities w.r.t. pinned Wiener measure with time parameter T>0 are proven on the sets , , consisting of all continuous paths ω:[0,1]→M such that ω(0)=x, ω(1)=y, and d(ω(s),ω(t))<R if s,t∈[(i−1)/N,i/N] for some integer i. Moreover, the asymptotic behaviour of the best constants in the Poincaré inequalities as T goes to 0 is studied. It turns out that the asymptotic depends crucially on the Riemannian metric on M and, in particular, on the geodesics contained in . Key ingredients in the proofs are a bisection argument, estimates for finite-dimensional spectral gaps, and a crucial variance estimate by Malliavin and Stroock.