Local Poincaré inequalities on loop spaces

Andreas Eberle
{"title":"Local Poincaré inequalities on loop spaces","authors":"Andreas Eberle","doi":"10.1016/S0764-4442(01)02174-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>M</em> be a compact connected Riemannian manifold, and fix <em>x</em>,<em>y</em>∈<em>M</em>. For a sufficiently small constant <em>R</em>&gt;0, Poincaré inequalities w.r.t. pinned Wiener measure with time parameter <em>T</em>&gt;0 are proven on the sets <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>, <span><math><mtext>N∈</mtext><mtext>N</mtext></math></span>, consisting of all continuous paths <em>ω</em>:[0,1]→<em>M</em> such that <em>ω</em>(0)=<em>x</em>, <em>ω</em>(1)=<em>y</em>, and <em>d</em>(<em>ω</em>(<em>s</em>),<em>ω</em>(<em>t</em>))&lt;<em>R</em> if <em>s</em>,<em>t</em>∈[(<em>i</em>−1)/<em>N</em>,<em>i</em>/<em>N</em>] for some integer <em>i</em>. Moreover, the asymptotic behaviour of the best constants in the Poincaré inequalities as <em>T</em> goes to 0 is studied. It turns out that the asymptotic depends crucially on the Riemannian metric on <em>M</em> and, in particular, on the geodesics contained in <span><math><mtext>Ω</mtext><msup><mi></mi><mn>R,N</mn></msup><msub><mi></mi><mn>x,y</mn></msub></math></span>. Key ingredients in the proofs are a bisection argument, estimates for finite-dimensional spectral gaps, and a crucial variance estimate by Malliavin and Stroock.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1023-1028"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02174-7","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let M be a compact connected Riemannian manifold, and fix x,yM. For a sufficiently small constant R>0, Poincaré inequalities w.r.t. pinned Wiener measure with time parameter T>0 are proven on the sets ΩR,Nx,y, N∈N, consisting of all continuous paths ω:[0,1]→M such that ω(0)=x, ω(1)=y, and d(ω(s),ω(t))<R if s,t∈[(i−1)/N,i/N] for some integer i. Moreover, the asymptotic behaviour of the best constants in the Poincaré inequalities as T goes to 0 is studied. It turns out that the asymptotic depends crucially on the Riemannian metric on M and, in particular, on the geodesics contained in ΩR,Nx,y. Key ingredients in the proofs are a bisection argument, estimates for finite-dimensional spectral gaps, and a crucial variance estimate by Malliavin and Stroock.

循环空间上的局部poincarcarr不等式
设M是紧连通黎曼流形,且固定x,y∈M。对于足够小的常数R>0,在集合ΩR,Nx,y, N∈N上证明了带有时间参数T>0的poincar不等式w.r.t.固定Wiener测度,这些集合由所有连续路径ω:[0,1]→M构成,使得ω(0)=x, ω(1)=y, d(ω(s),ω(t))<R if s,t∈[(i−1)/N,i/N]对于整数i,并且研究了poincar不等式中最佳常数在t趋于0时的渐近行为。事实证明,渐近关键取决于M上的黎曼度规,尤其是ΩR,Nx,y中包含的测地线。这些证明的关键成分是二分论证,有限维谱隙的估计,以及Malliavin和Stroock的关键方差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信