Mesure d'indépendance linéaire de logarithmes dans un groupe algébrique commutatif

Éric Gaudron
{"title":"Mesure d'indépendance linéaire de logarithmes dans un groupe algébrique commutatif","authors":"Éric Gaudron","doi":"10.1016/S0764-4442(01)02190-5","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain some new results in the theory of linear forms in logarithms on a commutative algebraic group, defined over <span><math><mtext>Q</mtext></math></span>. We generalize recent progress of S. David and N. Hirata [1]. In particular, we achieve an optimal linear independence measure in the height of the linear form and a measure more precise than Hirata's [4] for parameters related to the logarithms. The proof rests on Baker's method and a new argument of arithmetical nature.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1059-1064"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02190-5","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We obtain some new results in the theory of linear forms in logarithms on a commutative algebraic group, defined over Q. We generalize recent progress of S. David and N. Hirata [1]. In particular, we achieve an optimal linear independence measure in the height of the linear form and a measure more precise than Hirata's [4] for parameters related to the logarithms. The proof rests on Baker's method and a new argument of arithmetical nature.

在交换代数群中对数的线性独立性的度量
在q上定义的交换代数群上,我们得到了对数线性形式理论的一些新结果。我们推广了S. David和N. Hirata[1]的最新进展。特别是,我们在线性形式的高度上实现了最优的线性无关度量,并且在与对数相关的参数上实现了比Hirata[4]更精确的度量。这个证明基于贝克的方法和一个新的算术性质的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信