max-plus半环的最小实现问题和践踏问题是np - hard∗

Vincent D. Blondel , Natacha Portier
{"title":"max-plus半环的最小实现问题和践踏问题是np - hard∗","authors":"Vincent D. Blondel ,&nbsp;Natacha Portier","doi":"10.1016/S0764-4442(01)02192-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the <em>NP</em>-hardness of two problems. The first is the well-known minimal realization problem in the max-plus semiring. The second problem (Pisot's problem) is the problem of determining if a given integer linear recurrent sequence has a zero coefficient.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1127-1130"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02192-9","citationCount":"0","resultStr":"{\"title\":\"Le problème de la réalisation minimale dans le demi-anneau max-plus et le problème de Pisot sont NP-durs∗\",\"authors\":\"Vincent D. Blondel ,&nbsp;Natacha Portier\",\"doi\":\"10.1016/S0764-4442(01)02192-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the <em>NP</em>-hardness of two problems. The first is the well-known minimal realization problem in the max-plus semiring. The second problem (Pisot's problem) is the problem of determining if a given integer linear recurrent sequence has a zero coefficient.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1127-1130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02192-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了两个问题的np -硬度。第一个是在极大加半环中众所周知的最小实现问题。第二个问题(Pisot问题)是确定给定的整数线性循环序列是否具有零系数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Le problème de la réalisation minimale dans le demi-anneau max-plus et le problème de Pisot sont NP-durs∗

We prove the NP-hardness of two problems. The first is the well-known minimal realization problem in the max-plus semiring. The second problem (Pisot's problem) is the problem of determining if a given integer linear recurrent sequence has a zero coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信