{"title":"D-PANA: a convergent block-relaxation solution method for the discretized dual formulation of the Signorini–Coulomb contact problem†","authors":"Paolo Bisegna , Frédéric Lebon , Franco Maceri","doi":"10.1016/S0764-4442(01)02153-X","DOIUrl":null,"url":null,"abstract":"<div><p>Signorini's law of unilateral contact and Coulomb's friction law constitute a simple and useful framework for the analysis of unilateral frictional contact problems of a linearly elastic body with a rigid support. For quasi-static, monotone-loadings, the discrete dual formulation of this problem leads to a quasi-variational inequality, whose unknowns, after condensation, are the normal and tangential contact forces at nodes of the initial contact area. A new block-relaxation solution technique is proposed here. At the typical iteration step, shown to be a contraction for small friction coefficients, two quadratic programming problems are solved one after the other: the former is a friction problem with given normal forces, the latter is a unilateral contact problem with prescribed tangential forces. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1053-1058"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02153-X","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420102153X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Signorini's law of unilateral contact and Coulomb's friction law constitute a simple and useful framework for the analysis of unilateral frictional contact problems of a linearly elastic body with a rigid support. For quasi-static, monotone-loadings, the discrete dual formulation of this problem leads to a quasi-variational inequality, whose unknowns, after condensation, are the normal and tangential contact forces at nodes of the initial contact area. A new block-relaxation solution technique is proposed here. At the typical iteration step, shown to be a contraction for small friction coefficients, two quadratic programming problems are solved one after the other: the former is a friction problem with given normal forces, the latter is a unilateral contact problem with prescribed tangential forces. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate.