{"title":"线性各向异性弹性系统的边界稳定","authors":"Rabah Bey , Amar Heminna , Jean-Pierre Lohéac","doi":"10.1016/S0764-4442(01)02194-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend to anisotropic case with variable coefficients the boundary stabilization result obtained in [2]. We use as a main tool local coordinates in the expression of boundary integrals. Our conditions are purely geometrical and few restrictive.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1083-1088"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02194-2","citationCount":"1","resultStr":"{\"title\":\"Stabilisation frontière du système de l'élasticité linéaire anisotrope\",\"authors\":\"Rabah Bey , Amar Heminna , Jean-Pierre Lohéac\",\"doi\":\"10.1016/S0764-4442(01)02194-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we extend to anisotropic case with variable coefficients the boundary stabilization result obtained in [2]. We use as a main tool local coordinates in the expression of boundary integrals. Our conditions are purely geometrical and few restrictive.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1083-1088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02194-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stabilisation frontière du système de l'élasticité linéaire anisotrope
In this paper, we extend to anisotropic case with variable coefficients the boundary stabilization result obtained in [2]. We use as a main tool local coordinates in the expression of boundary integrals. Our conditions are purely geometrical and few restrictive.