{"title":"Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups","authors":"Daniel Neuenschwander","doi":"10.1016/S0764-4442(01)02164-4","DOIUrl":null,"url":null,"abstract":"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1029-1034"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For simply connected nilpotent Lie groups G, we show that limit laws of infinitesimal triangular systems Δ of symmetric probability measures on G are infinitely divisible even if Δ is not commutative. The same holds also if the measures of Δ are supported by some fixed discrete subgroup Γ⊂G. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.