Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups

Daniel Neuenschwander
{"title":"Triangular systems of probability measures on simply connected nilpotent and discrete subgroups of exponential Lie groups","authors":"Daniel Neuenschwander","doi":"10.1016/S0764-4442(01)02164-4","DOIUrl":null,"url":null,"abstract":"<div><p>For simply connected nilpotent Lie groups <em>G</em>, we show that limit laws of infinitesimal triangular systems <em>Δ</em> of symmetric probability measures on <em>G</em> are infinitely divisible even if <em>Δ</em> is not commutative. The same holds also if the measures of <em>Δ</em> are supported by some fixed discrete subgroup <em>Γ</em>⊂<em>G</em>. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 1029-1034"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02164-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For simply connected nilpotent Lie groups G, we show that limit laws of infinitesimal triangular systems Δ of symmetric probability measures on G are infinitely divisible even if Δ is not commutative. The same holds also if the measures of Δ are supported by some fixed discrete subgroup ΓG. Furthermore, we give a weakening of Wehn's conditions for the accompanying laws theorem in the case of discrete subgroups of exponential Lie groups.

指数李群的单连通幂零离散子群上的概率测度三角系统
对于单连通幂零李群G,我们证明了G上对称概率测度的无穷小三角系统Δ的极限律是无限可除的,即使Δ不可交换。如果Δ的测度被某个固定的离散子群Γ∧G支持,也是如此。在指数李群的离散子群情况下,给出了伴随律定理的wenn条件的弱化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信