Cleaner Materials最新文献

筛选
英文 中文
Single fiber tensile strength of seagrasses and the development and characterization of Zostera marina-based medium density boards
Cleaner Materials Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100283
Aldi Kuqo , Aldo Joao Cárdenas-Oscanoa , Carsten Mai
{"title":"Single fiber tensile strength of seagrasses and the development and characterization of Zostera marina-based medium density boards","authors":"Aldi Kuqo ,&nbsp;Aldo Joao Cárdenas-Oscanoa ,&nbsp;Carsten Mai","doi":"10.1016/j.clema.2024.100283","DOIUrl":"10.1016/j.clema.2024.100283","url":null,"abstract":"<div><div>This study investigates the potential of the leaves of the seagrass <em>Zostera marina</em> (ZM) as an alternative raw material for the production medium-density boards. In the first part, the tensile strength properties of various types of seagrasses were investigated. <em>Posidonia oceanica</em> fibers (POF) exhibited a mean tensile strength of up to 123 MPa, while its leaves (POL) reached up to 27 <!--> <!-->MPa. The ZM leaves also showed a similar tensile strength to <em>Posidonia oceanica</em> leaves, 22.9 MPa. In the second part, ZM leaves and wood fibers (WF) are further processed to produce medium density boards with densities ranging from 500 to 700 kg<!--> <!-->m<sup>−3</sup>. The boards were evaluated for fire resistance, thermal conductivity, mechanical strength, and water resistance-related properties. ZM-boards demonstrated high fire resistance and lower thermal conductivity compared to boards based on wood fiber (WF), i.e. medium density fiberboards (MDF), of similar density. However, due to the low tensile strength and unique morphology of the seagrass leaves, ZM-boards display a lower flexural strength (up to 10.9 MPa) and lower resistance to water absorption compared to boards produced from wood fibers (WF). Boards made by <em>Zostera marina</em> can be a promising alternative to commercial MDF panels especially for interior applications prioritizing fire protection and thermal insulation but they are mainly suited for non-structural uses. Further examination of its acoustic properties would assess its potential applications as sound-absorbing architectural panels.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100283"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of asphalt mixtures with recycled resources: Influence of electric arc furnace slag aggregate roughness and bitumen film thickness on fatigue performance
Cleaner Materials Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100282
Dario Benavides, Teresa López-Montero, Marilda Barra Bizinotto, Diego Aponte
{"title":"Experimental study of asphalt mixtures with recycled resources: Influence of electric arc furnace slag aggregate roughness and bitumen film thickness on fatigue performance","authors":"Dario Benavides,&nbsp;Teresa López-Montero,&nbsp;Marilda Barra Bizinotto,&nbsp;Diego Aponte","doi":"10.1016/j.clema.2024.100282","DOIUrl":"10.1016/j.clema.2024.100282","url":null,"abstract":"<div><div>Electric arc furnace slag (EAFS) is a viable alternative in asphalt mixtures due to its favourable mechanical properties. This study examines the impact of EAFS content and bitumen film thickness (<em>TF</em>) on the fatigue performance of asphalt mixtures. Mixtures with varying levels of EAFS replacement were designed, and their mechanical properties were evaluated through indirect tensile strength and stiffness tests, followed by fatigue tests using the four-point bending method and EBADE (Strain Sweep Test). The results indicated that mixtures with EAFS exhibited increased stiffness, but fatigue performance decreased at high strain levels. At low strain levels, EAFS mixtures performed similarly or better than the control. HMA_GL had the highest <em>TF</em> (13.97 μm), followed by HMA_GS (13.60 μm), HMA_SL (12.66 μm), and HMA_SS (11.77 μm), showing that as the EAFS content increases, the <em>TF</em> decreases. This finding was verified through Digital Image Analysis. This decrease in <em>TF</em> is due to the high porosity and roughness of the EAFS, which in turn reduces the effective bitumen (P<sub>be</sub>) in the mixture. HMA_SL*, with a <em>TF</em> equal to the control, demonstrated a 22 % improvement in fatigue performance compared to HMA_SL. In the EBADE tests, HMA_GL achieved 44.69 MJ/m<sup>3</sup> of dissipated energy, HMA_GS 31.55 MJ/m<sup>3</sup>, HMA_SL 34.45 MJ/m<sup>3</sup>, and HMA_SS 35.54 MJ/m<sup>3</sup>. The improved HMA_SL* recorded 42.15 MJ/m<sup>3</sup>, nearly matching the control. EBADE results confirmed that higher EAFS content increased initial stiffness, but the complex modulus (|<em>E*</em>|) decreased more rapidly as deformation increased. These results are consistent with the stiffness tests. These findings suggest that EAFS can successfully replace natural aggregates in asphalt mixtures, with a moderate increase in bitumen content recommended to improve fatigue performance.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100282"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts
Cleaner Materials Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100281
Shriram Marathe , Akhila Sheshadri , Łukasz Sadowski
{"title":"Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts","authors":"Shriram Marathe ,&nbsp;Akhila Sheshadri ,&nbsp;Łukasz Sadowski","doi":"10.1016/j.clema.2024.100281","DOIUrl":"10.1016/j.clema.2024.100281","url":null,"abstract":"<div><div>This study investigates the development and performance of agro-industrial waste-based air-cured alkali-activated concrete composites (AC) for sustainable high-strength rigid pavement applications. The calculated amounts of liquid sodium silicate and sodium hydroxide flakes were used with an adequate quantity of water to prepare the alkali-activator solution. Agro-Industrial by-products, including ground granulated blast furnace slag (GGBS), construction and demolition (C&amp;D) waste, and sugarcane bagasse ash (SBA), were utilized to develop AC mixes and the mechanical properties, micro-structural behaviour, and life cycle impacts were studied. Optimized AC mixes containing 50% recycled aggregates (RCA) (with 50% natural coarse aggregates) and 15% SBA (with 85% GGBS) demonstrated superior compressive, splitting-tensile, and flexural strength, while significantly reducing embodied energy and carbon emissions. Microstructural analysis through XRD, SEM, EDAX, and TGA confirmed the formation of stable alumino-silicate hydrate phases, contributing to enhanced mechanical strength performances. The life cycle analysis results indicated considerable environmental benefits compared to traditional Portland Cement based pavement concrete counterparts. This research presents a sustainable solution for pavement infrastructure, aligning with circular economy principles by promoting the reduction of resource consumption and greenhouse gas emissions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100281"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of biopolymer composites using lignin: A sustainable technology for fostering a green transition in the construction sector 利用木质素开发生物聚合物复合材料:促进建筑行业绿色转型的可持续技术
Cleaner Materials Pub Date : 2024-12-01 DOI: 10.1016/j.clema.2024.100279
Barney H. Miao , Robert J. Headrick , Zhiye Li , Leonardo Spanu , David J. Loftus , Michael D. Lepech
{"title":"Development of biopolymer composites using lignin: A sustainable technology for fostering a green transition in the construction sector","authors":"Barney H. Miao ,&nbsp;Robert J. Headrick ,&nbsp;Zhiye Li ,&nbsp;Leonardo Spanu ,&nbsp;David J. Loftus ,&nbsp;Michael D. Lepech","doi":"10.1016/j.clema.2024.100279","DOIUrl":"10.1016/j.clema.2024.100279","url":null,"abstract":"<div><div>Developing sustainable construction materials is important to help reduce the anthropogenic impacts of the construction industry. Currently, the production of concrete accounts for 8 % of global carbon emissions. Therefore, alternatives to concrete must be developed, to reduce its use in the future. New construction materials will help to facilitate a green transition as envisioned in global climate initiatives. Materials such as lignin are ideal, as they can be implemented with little additional cost to manufacture construction materials. We introduce a novel material, lignin-based biopolymer-bound soil composite (BSC), which is similar to other BSCs using other types of biopolymers. In addition, a design methodology is presented, which allows the manufacture of lignin-based BSCs with tailored characteristics. Two kinds of lignin — hydrolysis lignin and alkali lignin — were investigated, with five mix designs developed for each type of lignin. The lignin-based BSCs were found to have compressive strength ranging from 1.6–8.1 MPa, which allows them to be implemented in non-structural construction applications. Ultimate compressive strength, density, and other parameters were measured, leading to the development of design relationships for lignin-based BSC. The design relationships presented in this study will help introduce lignin-based BSC as a sustainable form of construction.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100279"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugarcane leaf-derived organosolv lignin as antibacterial and antioxidant agents of natural rubber composites 甘蔗叶衍生有机溶胶木质素作为天然橡胶复合材料的抗菌剂和抗氧化剂
Cleaner Materials Pub Date : 2024-11-25 DOI: 10.1016/j.clema.2024.100280
Kamonwat Nakason , Parinvadee Chukaew , Yuwanda Thongpanich , Fuangfa Utrarachkij , Sanchai Kuboon , Wasawat Kraithong , Skulrat Pichaiyut , Wanwitoo Wanmolee , Bunyarit Panyapinyopol
{"title":"Sugarcane leaf-derived organosolv lignin as antibacterial and antioxidant agents of natural rubber composites","authors":"Kamonwat Nakason ,&nbsp;Parinvadee Chukaew ,&nbsp;Yuwanda Thongpanich ,&nbsp;Fuangfa Utrarachkij ,&nbsp;Sanchai Kuboon ,&nbsp;Wasawat Kraithong ,&nbsp;Skulrat Pichaiyut ,&nbsp;Wanwitoo Wanmolee ,&nbsp;Bunyarit Panyapinyopol","doi":"10.1016/j.clema.2024.100280","DOIUrl":"10.1016/j.clema.2024.100280","url":null,"abstract":"<div><div>To enhance the sustainability and carbon neutrality of natural rubber (NR) derived product, lignin extracted from sugarcane leaf (SCL) was incorporated into NR to prepare environmentally friendly antibacterial (AB) and antioxidant (AO) lignin/NR composites. In this study, SCL lignin was isolated via an organosolv process at different temperatures (140 – 180 °C) and using various organic solvents (ethanol, acetone, and isopropyl alcohol (IPA)). Disk diffusion susceptibility tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) demonstrated the AB efficacy of SCL organosolv lignin against Gram-positive bacteria (<em>S. aureus</em>) compared to Gram-negative bacteria (<em>E. coli</em> and <em>S.</em> Typhimurium). The choice of solvent gradually influenced the AB and AO performances of the lignin. Py-GC/MS analysis revealed that SCL organosolv lignin predominantly comprised p-hydroxyphenyl (H’) and guaiacyl (G’) with a minor presence of syringyl (S’) lignin. The incorporation of SCL organosolv lignin into NR showed that NR vulcanizates exhibited enhanced mechanical, AO, and AB properties, depending on the solvent type used in the organosolv process. The NR vulcanizates incorporated with L-Acetone showed dominant aging properties and AB efficacy. On the other hand, the tensile strength and elongation at break of the NR composites were significantly improved by L-IPA and L-Ethanol. These results suggest that SCL organosolv lignin, particularly L-IPA, could be an excellent alternative bio-filler for enhancing the mechanical, AO, and AB properties of NR composites.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100280"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142719995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recirculation of construction and demolition Waste: A case study of Danish producers and demolishers 建筑和拆除废物的再循环:丹麦生产商和拆除商案例研究
Cleaner Materials Pub Date : 2024-11-14 DOI: 10.1016/j.clema.2024.100276
Julia Köhler, Fie Fredshavn Nielsen, Jakob Verstermark, Christian Thuesen
{"title":"Recirculation of construction and demolition Waste: A case study of Danish producers and demolishers","authors":"Julia Köhler,&nbsp;Fie Fredshavn Nielsen,&nbsp;Jakob Verstermark,&nbsp;Christian Thuesen","doi":"10.1016/j.clema.2024.100276","DOIUrl":"10.1016/j.clema.2024.100276","url":null,"abstract":"<div><div>As resource scarcity increases, the construction industry recognizes the potential of Reverse Logistic Supply Chains (RLSC) for demolition waste. Implementing RLSC, however, lacks maturity and poses challenges due to the complexity of the construction industry. This paper is the first to investigate the critical interface between demolishers and producers. In particular, demolishers are crucial for the potential to valorize reclaimed construction wood as they are the gatekeepers of the materials. We apply an existing framework, conceptualized through a systematic literature review, to the case of a Danish shed producer and their collaboration with demolishers. Our data foundation includes qualitative data from semi-structured interviews with industry stakeholders and quantitative financial data on conventional as well as selective demolition. Through the analysis of material, information, and financial flows of reclaimed wood, this paper identifies inhibitors to these flows and reveals that producers can address the majority. Since responsibilities for reprocessing, transportation, and storage require clarification, making agreements for (1) reprocessing and (2) transportation, potentially facilitated by (3) a digital platform can support the producer in overcoming these inhibitors. Even though we show that selective demolition can be financially attractive for demolishers, our findings call for additional supportive regulation of tender practices. Further, we coin the concept of reversed value proposition as RLSC necessitate a reversed understanding of value creation. Overall, this paper contributes empirical evidence to the existing framework, extends it by adding inhibitors and flows, and suggests an extension with platform thinking to support the implementation of RLSC.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100276"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the surface properties and particle size of hydrated lime on desulfurization 熟石灰的表面特性和粒度对脱硫的影响
Cleaner Materials Pub Date : 2024-11-12 DOI: 10.1016/j.clema.2024.100278
Karthikeyan Rajan , Duygu Kocaefe , Yasar Kocaefe , Jonathan Bernier , Yoann Robert , Yves Dargis
{"title":"Effects of the surface properties and particle size of hydrated lime on desulfurization","authors":"Karthikeyan Rajan ,&nbsp;Duygu Kocaefe ,&nbsp;Yasar Kocaefe ,&nbsp;Jonathan Bernier ,&nbsp;Yoann Robert ,&nbsp;Yves Dargis","doi":"10.1016/j.clema.2024.100278","DOIUrl":"10.1016/j.clema.2024.100278","url":null,"abstract":"<div><div>In the gas treatment center in smelters, hydrogen fluoride (HF) is separated from the outlet gases of electrolysis cells, which are used to produce aluminum from alumina. However, SO<sub>2</sub> largely remains in the effluent gas. Another method has to be developed to separate this gas which is harmful to the environment. In this study, semi-dry desulfurization of a SO<sub>2</sub> containing gas was performed at low SO<sub>2</sub> concentrations using hydrated lime [Ca(OH)<sub>2</sub>] as a catalytic desulfurizer under specific humidity conditions. The low reaction temperature of 100 °C and minimal use of the Ca-based desulfurizer under 17 % relative humidity achieved more than 95 % removal of SO<sub>2</sub>. The morphological changes and presence of sulfur in different lime samples were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Brunauer–Emmett–Teller (BET) analysis showed changes in the surface properties of hydrated lime after desulfurization. X-ray photoelectron spectroscopy (XPS) analysis provided the phase and composition identification of the sulfur species on hydrated lime and the CaSO<sub>3</sub>/CaSO<sub>4</sub> product ratio. Based on the experimental results, the optimum catalyst surface area with a specific particle size is critical to the effective conversion of Ca(OH)<sub>2</sub> into CaSO<sub>3</sub> and CaSO<sub>4</sub>. The practicality of a Ca-based desulfurizer and its ability to convert into the required product may be the key to reducing the overall cost of desulfurization in aluminum industry.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100278"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the influence of crushed sand on carbonation of Mortar: Physical and microstructural analysis 研究碎砂对砂浆碳化的影响:物理和微观结构分析
Cleaner Materials Pub Date : 2024-11-03 DOI: 10.1016/j.clema.2024.100277
Emmanuel A.M. Elat , Alexandre Pierre , Prosper Pliya , Myriam Duc , Michel Mbessa , Albert Noumowé
{"title":"Investigation of the influence of crushed sand on carbonation of Mortar: Physical and microstructural analysis","authors":"Emmanuel A.M. Elat ,&nbsp;Alexandre Pierre ,&nbsp;Prosper Pliya ,&nbsp;Myriam Duc ,&nbsp;Michel Mbessa ,&nbsp;Albert Noumowé","doi":"10.1016/j.clema.2024.100277","DOIUrl":"10.1016/j.clema.2024.100277","url":null,"abstract":"<div><div>The use of crushed sand instead as a substitute for river sand has gained importance in construction practices due to the limited availability of river sand. This study examines the physical and microstructural impacts of crushed sand on mortar carbonation. Using X-ray Diffraction (XRD), Thermo-Gravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). We highlight the influence of substituting river sand with crushed sand after exposure to 3 % CO<sub>2</sub> in an accelerated carbonation chamber for 28 days. The mass fractions of Ca(OH)<sub>2</sub> and CaCO<sub>3</sub> were determined by thermogravimetric analysis, and a decrease in porosity was observed with an increasing proportion of crushed sand in the mixture<em>.</em> Partial or total substitution of river sand with crushed sand, for environmental purposes, shows improved resistance against CO<sub>2</sub> attack. Our study reveals the beneficial effects of crushed sand in reducing porosity and carbonation compared to river sand.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100277"},"PeriodicalIF":0.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable natural polymers and fibers for 3D printing: A holistic perspective on processing, characterization, and advanced applications 用于 3D 打印的可生物降解天然聚合物和纤维:加工、表征和先进应用的整体视角
Cleaner Materials Pub Date : 2024-10-30 DOI: 10.1016/j.clema.2024.100275
M.A. Shadab Siddiqui , M.S. Rabbi , Radif Uddin Ahmed , Md. Maruf Billah
{"title":"Biodegradable natural polymers and fibers for 3D printing: A holistic perspective on processing, characterization, and advanced applications","authors":"M.A. Shadab Siddiqui ,&nbsp;M.S. Rabbi ,&nbsp;Radif Uddin Ahmed ,&nbsp;Md. Maruf Billah","doi":"10.1016/j.clema.2024.100275","DOIUrl":"10.1016/j.clema.2024.100275","url":null,"abstract":"<div><div>The biodegradable natural polymers and fibers could be suggested to revolutionize 3D printing as sustainable, biocompatible, and unique properties in the print matrix for different applications. This review article covers the natural polymers in the form of cellulose, alginate, starch, collagen, silk, chitosan, and gelatin as printing constituents. Furthermore, it includes various natural fibers such as hemp, jute, flax, and bamboo with unique characteristics and advantages in 3D printing. Reinforcements derived from nature have provided better tensile strength, moduli, and flexural properties when infused into polymer matrices, such as PLA, ABS, and PP. Extrusion-based methods, comprising Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF), are the most applied techniques of 3D printing for natural-polymer and fiber composites with a principal application in the medical and industrial domains. The future of natural polymers and fibers in 3D printing is becoming very promising despite uniform printability, interfacial adhesion, and mechanical property-related issues. Research in optimizing material composition, processing parameters, and post-processing techniques goes apace to attain the required properties, functionality, and performance. This review provides an outline to researchers and engineers working on 3D printing on the immense potential associated with biodegradable natural polymers and fibers for designing innovative, sustainable, and high-performance products in various applications that contribute to a greener and more sustainable future.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100275"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of phase change material (PCM) biochar composite for net-zero built environment applications 相变材料 (PCM) 生物炭复合材料在净零建筑环境应用中的实验研究
Cleaner Materials Pub Date : 2024-10-23 DOI: 10.1016/j.clema.2024.100274
Mohamed Katish , Stephen Allen , Adam Squires , Veronica Ferrandiz-Mas
{"title":"Experimental study of phase change material (PCM) biochar composite for net-zero built environment applications","authors":"Mohamed Katish ,&nbsp;Stephen Allen ,&nbsp;Adam Squires ,&nbsp;Veronica Ferrandiz-Mas","doi":"10.1016/j.clema.2024.100274","DOIUrl":"10.1016/j.clema.2024.100274","url":null,"abstract":"<div><div>This study presents a novel and sustainable method for integrating octadecane phase change material (PCM) into traditional building materials like mortar and gypsum using vacuum-impregnated biochar. Optimising the impregnation conditions resulted in a PCM-biochar composite with 62.21 % PCM loading and a latent heat energy of approximately 116.7 J.g<sup>−1</sup>, as measured by Differential Scanning Calorimetry (DSC). Thermogravimetric Analysis (TGA) confirmed the composite’s stability at high temperatures, while accelerated DSC validated its phase change capability and stability over 300 cycles. Characterisation via Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), X-ray Diffraction (XRD), and Solid-State Proton Nuclear Magnetic Resonance (1H NMR) verifies PCM retention within biochar pores and reveals interactions between PCM and biochar. Additionally, the non-pozzolanic nature of biochar is confirmed. Workability tests show reduced consistency with increased PCM-biochar content in mortar. At 40 % sand replacement rate with PCM-biochar, the compressive strength initially decreases by 45.50 % after 28 days, but it improves to 43 MPa after 120 days. Gypsum samples retain adequate strength for retrofitting applications (2 MPa), demonstrating the potential of PCM-biochar composites to enhance thermal energy storage in building materials, thereby supporting Net-zero building objectives.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100274"},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信