不同温拌剂对高粘度沥青流变特性及微观表征的影响

Dian Huo , Hang Diao , Beian Li , Yuzhu Liang , Tianqing Ling , Wenjing Kuang
{"title":"不同温拌剂对高粘度沥青流变特性及微观表征的影响","authors":"Dian Huo ,&nbsp;Hang Diao ,&nbsp;Beian Li ,&nbsp;Yuzhu Liang ,&nbsp;Tianqing Ling ,&nbsp;Wenjing Kuang","doi":"10.1016/j.clema.2025.100308","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of low carbon and clean sustainable development in road construction is imperative, and warm mix asphalt technology can help the transition from traditional high carbon emission paving materials to cleaner paving materials, thereby promoting the realization of sustainable development of road materials. The objective of this study is to examine the impact patterns of USP (a novel warm-mix additive) and Sasobit, both as individual entities and in combination, on the rheological and conventional characteristics of high viscosity asphalt. Additionally, the study seeks to delve into the mechanisms of action underlying these two distinct categories of warm-mix additives. The results of the research indicate that both warm-mix additives are effective in reducing temperatures when used alone or in combination. When used alone, USP shows significant advantages in low temperature performance, superior to both conventional hot mix asphalt and Sasobit warm-mix asphalt. The high temperature performance of USP modified asphalt is closely related to its dosage. On the other hand, the use of Sasobit alone can improve the high-temperature performance and creep recovery properties of high viscosity asphalt, but results in a decrease in low-temperature performance. When USP is blended with Sasobit, the resulting asphalt exhibits both good high and low temperature performance, with a significant improvement in aging resistance observed in the 5% USP and 2.5% Sasobit group. In conclusion, in order to ensure that warm-mix additives have a beneficial effect on the properties of high viscosity asphalt, the combined use of multiple warm-mix additives can be considered comprehensively to achieve a balance between low carbon emissions and excellent performance.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100308"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological properties and microscopic characterization of high viscosity asphalt with different warm mixing agents\",\"authors\":\"Dian Huo ,&nbsp;Hang Diao ,&nbsp;Beian Li ,&nbsp;Yuzhu Liang ,&nbsp;Tianqing Ling ,&nbsp;Wenjing Kuang\",\"doi\":\"10.1016/j.clema.2025.100308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pursuit of low carbon and clean sustainable development in road construction is imperative, and warm mix asphalt technology can help the transition from traditional high carbon emission paving materials to cleaner paving materials, thereby promoting the realization of sustainable development of road materials. The objective of this study is to examine the impact patterns of USP (a novel warm-mix additive) and Sasobit, both as individual entities and in combination, on the rheological and conventional characteristics of high viscosity asphalt. Additionally, the study seeks to delve into the mechanisms of action underlying these two distinct categories of warm-mix additives. The results of the research indicate that both warm-mix additives are effective in reducing temperatures when used alone or in combination. When used alone, USP shows significant advantages in low temperature performance, superior to both conventional hot mix asphalt and Sasobit warm-mix asphalt. The high temperature performance of USP modified asphalt is closely related to its dosage. On the other hand, the use of Sasobit alone can improve the high-temperature performance and creep recovery properties of high viscosity asphalt, but results in a decrease in low-temperature performance. When USP is blended with Sasobit, the resulting asphalt exhibits both good high and low temperature performance, with a significant improvement in aging resistance observed in the 5% USP and 2.5% Sasobit group. In conclusion, in order to ensure that warm-mix additives have a beneficial effect on the properties of high viscosity asphalt, the combined use of multiple warm-mix additives can be considered comprehensively to achieve a balance between low carbon emissions and excellent performance.</div></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"16 \",\"pages\":\"Article 100308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397625000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397625000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

道路建设追求低碳、清洁的可持续发展势在必行,温拌沥青技术可以帮助从传统的高碳排放铺装材料向更清洁的铺装材料过渡,从而促进道路材料可持续发展的实现。本研究的目的是研究USP(一种新型热混合添加剂)和Sasobit对高粘度沥青流变学和常规特性的影响模式,无论是单独的实体还是组合。此外,该研究旨在深入研究这两种不同类别的热混合添加剂的作用机制。研究结果表明,两种热混合添加剂单独使用或联合使用均能有效降低温度。单独使用时,USP在低温性能方面具有显著优势,优于常规热拌沥青和Sasobit温拌沥青。USP改性沥青的高温性能与其掺量密切相关。另一方面,单独使用Sasobit可以提高高粘度沥青的高温性能和蠕变恢复性能,但导致低温性能下降。当USP与Sasobit混合时,所得到的沥青具有良好的高低温性能,其中5% USP和2.5% Sasobit组的耐老化性能显著提高。综上所述,为确保热拌添加剂对高粘度沥青的性能产生有利影响,可综合考虑多种热拌添加剂的联合使用,以实现低碳排放与优异性能之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological properties and microscopic characterization of high viscosity asphalt with different warm mixing agents
The pursuit of low carbon and clean sustainable development in road construction is imperative, and warm mix asphalt technology can help the transition from traditional high carbon emission paving materials to cleaner paving materials, thereby promoting the realization of sustainable development of road materials. The objective of this study is to examine the impact patterns of USP (a novel warm-mix additive) and Sasobit, both as individual entities and in combination, on the rheological and conventional characteristics of high viscosity asphalt. Additionally, the study seeks to delve into the mechanisms of action underlying these two distinct categories of warm-mix additives. The results of the research indicate that both warm-mix additives are effective in reducing temperatures when used alone or in combination. When used alone, USP shows significant advantages in low temperature performance, superior to both conventional hot mix asphalt and Sasobit warm-mix asphalt. The high temperature performance of USP modified asphalt is closely related to its dosage. On the other hand, the use of Sasobit alone can improve the high-temperature performance and creep recovery properties of high viscosity asphalt, but results in a decrease in low-temperature performance. When USP is blended with Sasobit, the resulting asphalt exhibits both good high and low temperature performance, with a significant improvement in aging resistance observed in the 5% USP and 2.5% Sasobit group. In conclusion, in order to ensure that warm-mix additives have a beneficial effect on the properties of high viscosity asphalt, the combined use of multiple warm-mix additives can be considered comprehensively to achieve a balance between low carbon emissions and excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信