Development of low carbon concrete with high cement replacement ratio by multi-response optimization

Suliman Khan, Safat Al-Deen, Chi King Lee
{"title":"Development of low carbon concrete with high cement replacement ratio by multi-response optimization","authors":"Suliman Khan,&nbsp;Safat Al-Deen,&nbsp;Chi King Lee","doi":"10.1016/j.clema.2025.100304","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops three new Low Carbon Concrete (LCC) mix designs with characteristic cylinder compressive strengths of 32 MPa (C32), 25 MPa (C25), and 20 MPa (C20). By using a Taguchi design of experiment (T-DoE) model and combined it with Grey relational analysis (GRA) and Principal component analysis (PCA) for multi-response optimization, sixteen trial mixes employing supplementary cementitious materials (SCMs) to replace 80 % to 95 % of ordinary Portland cement (OPC) were tested. Three factors namely, OPC replacement percentage, ground granulated blast-furnace slag (GGBFS) to fly ash (FA) ratio, and silica fume (SF) to binder percentage were considered. Optimization results led to three LCC mix designs with 80 %, 85 %, and 90 % OPC replacement. Their compressive strength, split tensile strength, flexural strength, elastic modulus, and slump were evaluated. Confirmation tests showed that the 80 %, 85 % and 90 % OPC replacement mixes respectively satisfied requirements for C32, C25, and C20 concretes. Carbon footprint study showed that the LCC mixes led to significant reduction of carbon footprint when compared with OPC concrete. Finally, microstructure analysis was conducted to study in the microstructure characteristics of the LCCs.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"16 ","pages":"Article 100304"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397625000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops three new Low Carbon Concrete (LCC) mix designs with characteristic cylinder compressive strengths of 32 MPa (C32), 25 MPa (C25), and 20 MPa (C20). By using a Taguchi design of experiment (T-DoE) model and combined it with Grey relational analysis (GRA) and Principal component analysis (PCA) for multi-response optimization, sixteen trial mixes employing supplementary cementitious materials (SCMs) to replace 80 % to 95 % of ordinary Portland cement (OPC) were tested. Three factors namely, OPC replacement percentage, ground granulated blast-furnace slag (GGBFS) to fly ash (FA) ratio, and silica fume (SF) to binder percentage were considered. Optimization results led to three LCC mix designs with 80 %, 85 %, and 90 % OPC replacement. Their compressive strength, split tensile strength, flexural strength, elastic modulus, and slump were evaluated. Confirmation tests showed that the 80 %, 85 % and 90 % OPC replacement mixes respectively satisfied requirements for C32, C25, and C20 concretes. Carbon footprint study showed that the LCC mixes led to significant reduction of carbon footprint when compared with OPC concrete. Finally, microstructure analysis was conducted to study in the microstructure characteristics of the LCCs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信