Cleaner MaterialsPub Date : 2024-10-10DOI: 10.1016/j.clema.2024.100273
Larissa Virgínia da Silva Ribas , Iran Gomes Rocha Segundo , Joaquim Carneiro , Elisabete Fraga de Freitas , Verônica Teixeira Franco Castelo Branco
{"title":"Research trends on thermochromic asphalt mixtures functionalization: Bibliometric analysis and review","authors":"Larissa Virgínia da Silva Ribas , Iran Gomes Rocha Segundo , Joaquim Carneiro , Elisabete Fraga de Freitas , Verônica Teixeira Franco Castelo Branco","doi":"10.1016/j.clema.2024.100273","DOIUrl":"10.1016/j.clema.2024.100273","url":null,"abstract":"<div><div>Asphalt mixtures absorb high levels of solar light, increasing their internal temperatures and negatively affecting their behavior. In urban areas, this leads to the urban heat island (UHI) phenomenon, where extensive asphalt coverage raises microclimate temperatures. Integrating thermochromic properties into asphalt could provide a sustainable solution to mitigate UHI while maintaining the necessary mechanical performance. This research reviews the literature, scientific advances, gaps, and future perspectives on thermochromic (TCM) asphalt mixtures through bibliometric analysis and systematic review. The analysis highlights that thermochromic asphalt has recently gained significant scientific interest, with an increasing number of publications from 2013 to 2023. Notably, Hunan University in China has emerged as a leading contributor to thermochromic-related publications. The findings identify the wet method as a prevalent form of thermochromic functionalization, with 4–6% TCM content considered most suitable for thermal performance. Adding TiO<sub>2</sub> improves optical characteristics due to its high reflectance in the Near-infrared solar spectrum. Studies using TCM binders typically show asphalt mixtures with better resistance to rutting and cracking, likely due to enhanced thermoregulation. The key knowledge gaps identified include the lack of consistent procedures across studies, the feasibility of scaling lab-based methods to field applications, and the need for experiments to assess their impact on road safety, surface characteristics, and the durability of thermochromic properties over the pavement’s service life. This review highlights the promise of TCM for urban heat management and emphasizes the importance of additional research to achieve the ideal balance between thermal and mechanical properties.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100273"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleaner MaterialsPub Date : 2024-10-10DOI: 10.1016/j.clema.2024.100272
Elen Abuowda, Hilal El-Hassan, Tamer El-Maaddawy
{"title":"Synergistic impact of geopolymer binder and recycled coarse aggregates on the performance of concrete masonry units","authors":"Elen Abuowda, Hilal El-Hassan, Tamer El-Maaddawy","doi":"10.1016/j.clema.2024.100272","DOIUrl":"10.1016/j.clema.2024.100272","url":null,"abstract":"<div><div>This study examines the combined effect of geopolymeric binder and recycled coarse aggregates (RCA) on the properties of concrete masonry units (CMU). A target 1-day compressive strength of at least 13.8 MPa was attained for all mixes to satisfy the load-bearing strength requirements. Geopolymer mixes made with RCA at replacement rates of up to 100 % were evaluated and compared to a cementitious control mix made with natural coarse aggregates. The environmental and economic impacts were then integrated with the quantity of waste valorized and compressive strength in a multifunctional performance index. Experimental results showed that the utilization of geopolymers as a substitute for Portland cement in the production of CMU did not impact the oven-dry density but reduced the water absorption capacity by up to 26 %. Although the incorporation of RCA negatively impacted these two properties, their values remained within the acceptable range stated by the standards. The geopolymer CMU mix made without RCA had 9 and 25 % lower 28-day compressive and splitting tensile strengths compared to the cement control mix, respectively. Subsequent RCA replacement further reduced these mechanical properties. While the linear drying shrinkage was reduced upon substituting the cementitious binder with the geopolymeric counterpart, RCA replacement of up to 100 % increased the linear drying shrinkage to reach 0.091 %, exceeding the limit set by the standard. Overall, the CMU mix made with geopolymer binder and 75–100 % RCA was found to be optimal for load-bearing applications.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100272"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valorization of recycled fine powder glass (RFPG) in additive manufacturing: Optimization of the RFPG content in polyethylene terephthalate glycol (PETG) and multi-response analysis","authors":"Markos Petousis , Nikolaos Michailidis , Václav Kulas , Vassilis Papadakis , Mariza Spiridaki , Nikolaos Mountakis , Apostolos Argyros , John Valsamos , Emmanouel Stratakis , Nectarios Vidakis","doi":"10.1016/j.clema.2024.100271","DOIUrl":"10.1016/j.clema.2024.100271","url":null,"abstract":"<div><div>A cyclic economy and sustainability-driven production are key aspects of the industry. Recycled feedstocks are steadily replacing virgin materials to produce parts and as sustainable additives to develop eco-friendly composites. The reinforcing potential of recycled fine powder glass (FPG) on terephthalate glycol (PETG) is investigated. The performances of six different compounds (with FPG loadings of 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0 wt%) in filament and three-dimensional (3D) specimens form (manufactured with the material extrusion – MEX method) were compared with PETG pure. This research included thermal and rheological analyses, mechanical tests, and morphological and structural investigations. According to these findings, the PETG/RFPG 8.0 wt% composite presented remarkable results in the tensile and flexural (16.3 % and 16.9 % strength increase, respectively) tests, while PETG/RFPG 10.0 wt% had the greatest performance concerning microhardness. Both the dimensional deviation and porosity results show excellent performance in the case of PETG/RFPG 6.0 wt%, by being 67.3 % and 87.1 % improved vs. the PETG pure. These results indicate that RFPG is a promising reinforcement additive for MEX 3D printing that can replace the commonly used inorganic fillers and promote the sustainability of 3D printing.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"14 ","pages":"Article 100271"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Restaurant food waste valorization by microwave-assisted hydrolysis: Optimization, typological and biochemical analysis","authors":"Payam Torabi , Nasser Hamdami , Nafiseh Soltanizadeh , Omidvar Farhadian , Alain Le-Bail","doi":"10.1016/j.clema.2024.100269","DOIUrl":"10.1016/j.clema.2024.100269","url":null,"abstract":"<div><p>Annually, a substantial volume of food waste is being released into the environment. Restaurant food waste (RFW) valorization using microwave-assisted hydrolysis (MAH) is a sustainable approach to produce fermentable sugars. However, RFW is composed of different foodstuffs with different physicochemical, nutritional, and degradation rates. This study explored the typological, chemical, and elemental analysis of RFW. Results revealed that the four main types of RFW were vegetable (33.2 %), meat (19.3 %), rice (15.2 %), and bread waste (11.0 %). The key parameters impacting the MAH of typologically sorted RFW were identified using the Plackett–Burman design (PBD). Then the central composite design (CCD) with 30 runs was used to increase reducing sugar content (RSC). The optimized condition was as follows: temperature 96.0 °C, microwave power 340 W, HCl concentration of 1.45 %, and microwave heating time 11.1 min. The derived hydrolysates were characterized for their biochemical and monosaccharide composition.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100269"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000534/pdfft?md5=e8d56f3f57b3a04bb884d79c89147ead&pid=1-s2.0-S2772397624000534-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleaner MaterialsPub Date : 2024-09-01DOI: 10.1016/j.clema.2024.100270
Jayaprakash Saththasivam, Oluwaseun Ogunbiyi, Jenny Lawler, Zhaoyang Liu
{"title":"An eco-friendly approach to separate emulsified oil from water using all natural materials of chitosan and beach sand","authors":"Jayaprakash Saththasivam, Oluwaseun Ogunbiyi, Jenny Lawler, Zhaoyang Liu","doi":"10.1016/j.clema.2024.100270","DOIUrl":"10.1016/j.clema.2024.100270","url":null,"abstract":"<div><p>Oil-contaminated water from oil and gas exploration remains the industry’s primary waste stream. The common method of using chemical coagulation/flocculation followed by air flotation has drawbacks such as generating non-biodegradable and toxic sludge and high operational costs. This study presents an eco-friendly alternative utilizing chitosan and beach sand to remove emulsified oil from water. Chitosan acts as a biodegradable flocculant, while beach sand aids in high-density floc formation and accelerates settling velocity. This approach achieved up to 94 % oil removal efficiency and reduced settling time from 90 to 15 min by using 100 mg/L chitosan and 500 mg/L beach sand with a particle size distribution of 50–100 μm. Shorter settling time reduces capital expenditure compared to conventional methods. Additionally, using natural materials like chitosan and beach sand minimizes toxic sludge generation. This eco-friendly approach offers a promising alternative to conventional methods for treating oily wastewater.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100270"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000546/pdfft?md5=b5a1467e74392384cd49e52b1e748904&pid=1-s2.0-S2772397624000546-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleaner MaterialsPub Date : 2024-09-01DOI: 10.1016/j.clema.2024.100260
Qilin Yang , Jiao Lin , Xiaowei Wang , Dawei Wang , Ning Xie , Xianming Shi
{"title":"Corrigendum to “A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties” [Clean Mater. 12 (2024) 100255]","authors":"Qilin Yang , Jiao Lin , Xiaowei Wang , Dawei Wang , Ning Xie , Xianming Shi","doi":"10.1016/j.clema.2024.100260","DOIUrl":"10.1016/j.clema.2024.100260","url":null,"abstract":"","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100260"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000443/pdfft?md5=0ea1c83cb002936fe3e569310ce6261f&pid=1-s2.0-S2772397624000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141700002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleaner MaterialsPub Date : 2024-08-17DOI: 10.1016/j.clema.2024.100268
Alejandro Villegas-Fuentes , Laura Edith Castellano , Alfredo Rafael Vilchis-Nestor , Priscy Alfredo Luque
{"title":"Sustainable and environmentally friendly synthesis of ZnO semiconductor nanoparticles from Bauhinia forficata leaves extract and the study of their photocatalytic and antibacterial activity","authors":"Alejandro Villegas-Fuentes , Laura Edith Castellano , Alfredo Rafael Vilchis-Nestor , Priscy Alfredo Luque","doi":"10.1016/j.clema.2024.100268","DOIUrl":"10.1016/j.clema.2024.100268","url":null,"abstract":"<div><p>The growing need to obtain nanomaterials has resulted in a trend to avoid environmentally harmful methodologies involving chemicals that damage ecosystems and health by searching for natural reducers and stabilizers with zero polluting impact. In this research, zinc oxide nanoparticles were synthesized following an environmentally friendly synthesis methodology by using a natural extract of <em>Bauhinia forficata</em> that, thanks to its phytochemical composition rich in organic molecules such as polyphenols and flavonoids, allows the correct formation of nanoparticles by acting as stabilizers. The results of the characterizations show the proper formation of the nanoparticles and a direct relationship between the percentage used to obtain the nanoparticles and their properties. The results obtained from XRD show a hexagonal zincite shape and crystallite sizes in the range of 22.25–31.05 nm. The appearance of a signal at ∼400 cm<sup>−1</sup> obtained from FTIR confirms the formation of the Zn-O- bond. Subsequently, the removal of different organic dyes from polluted water was analyzed using zinc oxide semiconductor nanoparticles as photocatalysts under ultraviolet light. The results show outstanding degradation of the dyes, being able to remove at least 98.0 %, 84.4 %, 94.64 %, 95.5 %, and 98.2 % for methylene blue, methyl orange, rhodamine-B, Congo red, and malachite green, respectively. Additionally, the antibacterial effect of the obtained materials against multiple pathogenic bacteria was studied. All the synthesized nanoparticle samples showed an antibacterial effect, even at low concentrations for all the analyzed pathogens. The results show the feasibility of using <em>Bauhinia forficata</em> to obtain zinc oxide nanoparticles and its multiple applications due to its improved properties.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100268"},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000522/pdfft?md5=18418432c6c102dcd4b53ee6112a347f&pid=1-s2.0-S2772397624000522-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on sustainable use of recycled construction and demolition waste aggregates in pavement base and subbase layers","authors":"Zainul Abedin Khan , Umashankar Balunaini , Susanga Costa , Nhu H.T. Nguyen","doi":"10.1016/j.clema.2024.100266","DOIUrl":"10.1016/j.clema.2024.100266","url":null,"abstract":"<div><p>In recent times, the continuous growth of construction and demolition (C&D) activities have resulted in increases in the utilization of natural resources as well as global C&D waste production. A major part of C&D waste produced is dumped in landfills worldwide although some countries have adopted good recycling and reuse facilities to generated C&D waste. Based on an extensive critical review of published literature on the topic including global C&D waste recycling statistics and composition of generated wastes, this paper identifies key physical,<!--> <!-->mechanical, and geotechnical characteristics of recycled C&D waste aggregates specific to use as pavement base or subbase materials. Recycled aggregates typically have sufficient CBR, abrasion resistance, compressive strength and resilient modulus in accordance with various road standard specifications, which enable their applications for pavement base and subbase layer construction. Recycled aggregates typically have higher water absorption and lower specific gravity values than virgin aggregates. Furthermore, this study evaluates the feasibility and effectiveness of recycled aggregates in pavement base and subbase layers based on the detailed laboratory investigations. Additionally, case studies involving large-volume utilization of recycled aggregates for field-scale pavement construction are presented facilitating the broader adoption of recycled materials in sustainable construction of road pavements. These studies document crucial insights into its real field performance in terms of strength, durability and longevity. Finally, authors have discussed the potential challenges, research gaps and future insights on the use of recycled aggregates in pavement construction. The use of recycled aggregates in pavement construction still has some barriers and challenges such as availability in bulk quantity especially at the field scale and absence of road standards for application, which require further research and practical developments to promote the sustainable use of these materials in the future.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100266"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000509/pdfft?md5=432f7e6c3c588ec7ed7b2877dddcfc57&pid=1-s2.0-S2772397624000509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleaner MaterialsPub Date : 2024-07-31DOI: 10.1016/j.clema.2024.100267
Pearpran Wattanavichien, Mitsuyasu Iwanami
{"title":"Investigation of the mechanical, microstructure, and durability properties of concrete with fine uniform and non-uniform polyethylene terephthalate (PET) aggregates","authors":"Pearpran Wattanavichien, Mitsuyasu Iwanami","doi":"10.1016/j.clema.2024.100267","DOIUrl":"10.1016/j.clema.2024.100267","url":null,"abstract":"<div><p>Concrete manufacturing is highly resource-intensive and is a major source of greenhouse gas emission. Accelerating depletion of natural resources such as sand, which is the primary material for aggregate in concrete manufacture is a growing problem. At the same time, the disposal of vast volumes of non-biodegradable plastic waste poses a global environmental challenge. The incorporation of aggregates derived from municipal plastic waste to substitute for sand has the potential to help address both issues, while at the same time mitigating greenhouse gas emission. This study examines the potential of municipal polyethylene terephthalate (PET) plastic waste as a fine aggregate in concrete manufacturing. The primary focus was on PET aggregates with non-uniform and uniform shapes ranging in size from 2.36 to 4.75 mm. In the concrete mixtures, 0 %, 30 %, and 50 % of the fine natural aggregate by volume were replaced with fine PET aggregate with a water to cement ratio of 0.40. The obtained results showed a reduction in compressive and splitting tensile strength when compared to control specimens. However, replacing 30 % of fine natural aggregate with PET (both uniform and non-uniform shapes) significantly improved chloride resistance by 13 % and 12 %, respectively, while also enhancing the bond between cement paste and PET particles. This study characterizes the material properties of PET concrete, which represents a promising method for reusing municipal plastic waste and mitigating environmental concerns in concrete production.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100267"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000510/pdfft?md5=9247e081d078f8b76a504d6ee0393b19&pid=1-s2.0-S2772397624000510-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predictive performance assessment of recycled coarse aggregate concrete using artificial intelligence: A review","authors":"Parveen Kumari , Sagar Paruthi , Ahmad Alyaseen , Afzal Husain Khan , Alpana Jijja","doi":"10.1016/j.clema.2024.100263","DOIUrl":"10.1016/j.clema.2024.100263","url":null,"abstract":"<div><p>Recycled coarse aggregate concrete enables the creation of environmentally friendly and cost-effective mixes. It helps address the disposal problem of demolition concrete waste, meeting demand while improving product functionality and reusability. The abundance of obsolete buildings in cemeteries contributes to Construction and Demolition waste. Recycled Concrete Aggregate (RCA) from demolished structures can be utilized as aggregates, albeit with concerns about its impact on compressive strength due to absorption issues. This review aimed to study and develop the different Artificial Intelligence (AI) model for the prediction of the compressive strength of concrete with varying RCA content and natural coarse aggregate content as input parameters while compressive strength as output parameter. The range of the input parameters is 0 % to 100 % while the range output parameter is 28 MPa to 70.3 MPa. Experimental data from literature articles used to train and validate the model development. Engineers and researchers can utilize these models to predict compressive strength by changing the input parameters. XGBoost Regression Model performed well with R<sup>2</sup> 0.93594 followed by Random Forest Model with R<sup>2</sup> 0.92766, and Gradient Boosting Model with R<sup>2</sup> 0.90616 respectively. Ridge Regression, Lasso Regression, and Linear Regression Models were not performed well in predicting the compressive strength of RCA concrete with R<sup>2</sup> 0.57657, 0.57558, 0.57675 respectively. ANN also performed significant in prediction of RCAC compressive strength with R<sup>2</sup> 0.8039. Future research could focus on optimizing the mechanical properties of concrete containing RCA using AI models. Furthermore, the study extends its analysis to explore the application of AI in predicting the strength of various types of concrete, highlighting the versatility and potential of AI-driven approaches in enhancing concrete mix design.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100263"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000479/pdfft?md5=87db1fd8230120c69c7a10eb527947f6&pid=1-s2.0-S2772397624000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}