Carbonation reaction of recycled concrete aggregates (RCA): CO2 mass consumption under various treatment conditions

Hossein Sousanabadi Farahani , Amin Hosseini Zadeh , Jiong Hu , Chris Hawkins , Seunghee Kim
{"title":"Carbonation reaction of recycled concrete aggregates (RCA): CO2 mass consumption under various treatment conditions","authors":"Hossein Sousanabadi Farahani ,&nbsp;Amin Hosseini Zadeh ,&nbsp;Jiong Hu ,&nbsp;Chris Hawkins ,&nbsp;Seunghee Kim","doi":"10.1016/j.clema.2025.100296","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete is a key building material around the world due to its excellent strength and durability. Recycling demolished concrete for new construction materials may play a significant role in sustainable development. Producing recycled concrete aggregates (RCA) from waste concrete is one approach for such an initiative. However, using RCA may pose challenges, such as reduced density, lower elastic modulus and strength, and increased water absorption. Recently, the carbonation of RCA has emerged as a method to address those concerns. This study explores the carbon sequestration capacity of RCA through carbonation, examining various parametric conditions, including initial CO<sub>2</sub> pressure, relative humidity, temperature, and pre-treatment approach. Both lab-scale and large-scale carbonation tests were conducted. Additionally, a cost analysis and CO<sub>2</sub> footprint assessment were performed. The findings showed that applying higher initial CO<sub>2</sub> pressures (<em>e.g.</em>, 40–60 psi) and optimal relative humidity (∼55 %) could significantly enhance the carbonation efficiency of RCA. Elevating temperature also led to accelerated CO<sub>2</sub> consumption, being more effective on the lab scale. The economic analysis presented potential cost benefits when substituting natural aggregates with CO<sub>2</sub>-treated RCA. All in all, these results suggest that the carbonation of RCA may provide significant environmental benefits through carbon sequestration, promoting sustainable construction practices.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100296"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277239762500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete is a key building material around the world due to its excellent strength and durability. Recycling demolished concrete for new construction materials may play a significant role in sustainable development. Producing recycled concrete aggregates (RCA) from waste concrete is one approach for such an initiative. However, using RCA may pose challenges, such as reduced density, lower elastic modulus and strength, and increased water absorption. Recently, the carbonation of RCA has emerged as a method to address those concerns. This study explores the carbon sequestration capacity of RCA through carbonation, examining various parametric conditions, including initial CO2 pressure, relative humidity, temperature, and pre-treatment approach. Both lab-scale and large-scale carbonation tests were conducted. Additionally, a cost analysis and CO2 footprint assessment were performed. The findings showed that applying higher initial CO2 pressures (e.g., 40–60 psi) and optimal relative humidity (∼55 %) could significantly enhance the carbonation efficiency of RCA. Elevating temperature also led to accelerated CO2 consumption, being more effective on the lab scale. The economic analysis presented potential cost benefits when substituting natural aggregates with CO2-treated RCA. All in all, these results suggest that the carbonation of RCA may provide significant environmental benefits through carbon sequestration, promoting sustainable construction practices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信