Self-cleaning stone Façades using TiO2 Microwave-Synthesised Coatings

David Henriques Bento , Maria Leonor Matias , Maria Magalhães , Catarina Quitério , Ana Pimentel , Dora Sousa , Pedro Amaral , Carlos Galhano , Elvira Fortunato , Rodrigo Martins , Daniela Nunes
{"title":"Self-cleaning stone Façades using TiO2 Microwave-Synthesised Coatings","authors":"David Henriques Bento ,&nbsp;Maria Leonor Matias ,&nbsp;Maria Magalhães ,&nbsp;Catarina Quitério ,&nbsp;Ana Pimentel ,&nbsp;Dora Sousa ,&nbsp;Pedro Amaral ,&nbsp;Carlos Galhano ,&nbsp;Elvira Fortunato ,&nbsp;Rodrigo Martins ,&nbsp;Daniela Nunes","doi":"10.1016/j.clema.2025.100294","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development and characterization of self-cleaning coatings using titanium dioxide (TiO<sub>2</sub>) nanoparticles for natural stone façades, particularly limestone. An energy-efficient, eco-friendly, fast (30 min), and low temperature (110 °C) microwave-assisted solvothermal method is reported for synthesising TiO<sub>2</sub> nanoparticles. These nanoparticles were integrated into coatings that were further applied to limestone substrates via spray-coating, maintaining the stone’s appearance while enhancing its self-cleaning properties. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), UV–VIS spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis were used to fully characterize the nanopowder. The anatase phase of TiO<sub>2</sub> nanoparticles and a band gap energy of about 3.24 eV were confirmed. SEM and STEM observations revealed that the nanopowder is formed by spherical particles with very fine nanocrystals highly agglomerated, however ensuing a high specific surface area of 199 m<sup>2</sup>/g. The self-cleaning properties of the coated limestone were assessed using static contact angle measurements. The results showed a significant enhancement in hydrophilicity, with the static contact angle of the coated limestone substrate reducing to nearly zero even without UV exposure, indicating complete wettability. The coating was also subjected to adhesion tests, confirming the presence of TiO<sub>2</sub> nanoparticles even after multiple cycles. The photocatalytic activity of the developed coating was evaluated using rhodamine B and methyl orange as model pollutants under solar radiation. The coating effectively degraded both model pollutants, and the photocatalytic cycling tests revealed a stable performance after multiple cycles. This research provides a promising approach for creating sustainable and low-maintenance building materials, contributing to preserving natural stone façades and reducing environmental impact in the construction industry.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100294"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397625000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development and characterization of self-cleaning coatings using titanium dioxide (TiO2) nanoparticles for natural stone façades, particularly limestone. An energy-efficient, eco-friendly, fast (30 min), and low temperature (110 °C) microwave-assisted solvothermal method is reported for synthesising TiO2 nanoparticles. These nanoparticles were integrated into coatings that were further applied to limestone substrates via spray-coating, maintaining the stone’s appearance while enhancing its self-cleaning properties. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), UV–VIS spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis were used to fully characterize the nanopowder. The anatase phase of TiO2 nanoparticles and a band gap energy of about 3.24 eV were confirmed. SEM and STEM observations revealed that the nanopowder is formed by spherical particles with very fine nanocrystals highly agglomerated, however ensuing a high specific surface area of 199 m2/g. The self-cleaning properties of the coated limestone were assessed using static contact angle measurements. The results showed a significant enhancement in hydrophilicity, with the static contact angle of the coated limestone substrate reducing to nearly zero even without UV exposure, indicating complete wettability. The coating was also subjected to adhesion tests, confirming the presence of TiO2 nanoparticles even after multiple cycles. The photocatalytic activity of the developed coating was evaluated using rhodamine B and methyl orange as model pollutants under solar radiation. The coating effectively degraded both model pollutants, and the photocatalytic cycling tests revealed a stable performance after multiple cycles. This research provides a promising approach for creating sustainable and low-maintenance building materials, contributing to preserving natural stone façades and reducing environmental impact in the construction industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信