Cleaner Chemical Engineering最新文献

筛选
英文 中文
MXene combined with β-cyclodextrin stabilized cottonseed oil Pickering emulsions for the preparation of nano-cutting fluids MXene结合β-环糊精稳定棉籽油酸洗乳剂制备纳米切削液
Cleaner Chemical Engineering Pub Date : 2024-12-18 DOI: 10.1016/j.clce.2024.100133
Wei Wang , Mingan Zhou , Haijiang Xie , Bin Dai , Hualin Lin , Sheng Han
{"title":"MXene combined with β-cyclodextrin stabilized cottonseed oil Pickering emulsions for the preparation of nano-cutting fluids","authors":"Wei Wang ,&nbsp;Mingan Zhou ,&nbsp;Haijiang Xie ,&nbsp;Bin Dai ,&nbsp;Hualin Lin ,&nbsp;Sheng Han","doi":"10.1016/j.clce.2024.100133","DOIUrl":"10.1016/j.clce.2024.100133","url":null,"abstract":"<div><div>Cutting fluids have long occupied an essential position in industrial manufacturing, but traditional mineral oil-based cutting fluids have limited their application in advanced manufacturing due to hazardous health, non-degradability, and poor thermal conductivity and cleaning ability. To this end, MXene (Ti<sub>3</sub>C<sub>2</sub>) was combined with oil-in-water (O/W) Pickering emulsion prepared from β-cyclodextrin-stabilized cottonseed oil to develop a new, highly efficient, environmentally friendly nano-cutting fluid. Among them, β-cyclodextrin, a cyclic oligosaccharide, can be employed as Pickering particles to improve the antioxidant and emulsion stability of cottonseed oil; MXene, an emerging class of 2D nanomaterials possessing excellent lubricating properties, mechanical properties, and thermal stability, is an ideal material for the preparation of high-performance nano-cutting fluids. Optimized by the response surface design, the prepared Pickering emulsion with MXene (0.1wt.%) remained stable for about a month without delamination and improved the thermal conductivity by 136.4 % compared to cottonseed oil. Meanwhile, the coefficient of friction (COF), wear spot diameter (WSD), and tapping torque of Pickering emulsion with MXene were reduced by 35.64 %, 10.90 %, and 17.13 %, respectively, compared with cottonseed oil, and also outperformed commercial cutting fluids. The reduction is attributed to the fact that the oxygen functional groups on the surface of MXene can form hydrogen bonds, which are adsorbed on the friction side to form a strong and dense lubricant film.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical treatment of wastewater containing reactive Blue 4 (RB 4) dye: RSM and ANN optimization, technoeconomic analysis and sludge characterization 电化学处理活性蓝4染料废水:RSM和ANN优化、技术经济分析和污泥表征
Cleaner Chemical Engineering Pub Date : 2024-12-16 DOI: 10.1016/j.clce.2024.100138
Kajal Gautam , Yatindra Kumar , Shriram Sonawane , Sushil Kumar
{"title":"Electrochemical treatment of wastewater containing reactive Blue 4 (RB 4) dye: RSM and ANN optimization, technoeconomic analysis and sludge characterization","authors":"Kajal Gautam ,&nbsp;Yatindra Kumar ,&nbsp;Shriram Sonawane ,&nbsp;Sushil Kumar","doi":"10.1016/j.clce.2024.100138","DOIUrl":"10.1016/j.clce.2024.100138","url":null,"abstract":"<div><div>In the present study, electrochemistry based electro-coagulation (EC) process, known as green process is used for the decolorization of Reactive Blue 4 (RB4) from simulated textile wastewater. A multivariate approach, response surface methodology (RSM) and central composite design (CCD) is employed to model and optimize the EC process with five input variables (pH, initial concentration of dye, current density, operating time, and electrodes gap) to treat the wastewater containing RB 4 dye. The efficiency of EC process is calculated in terms of % decolorization and % chemical oxygen demand (COD) removal. A back-propagation Artificial Neural Network (BP - ANN) is also engaged to predict the % color and % COD removal. The experimental values of % decolorization (89.3 %) and % COD removal (84.3 %) are found very close to predicted % decolorizations (88.6 % and 89.4 %) and % COD removal (83.4 % and 84.4 %) at optimized conditions [pH (<em>X<sub>1</sub></em>) = 7.0; initial dye concentration (<em>X<sub>2</sub></em>) = 1297.6 mg <span>l</span><sup>-1</sup>; current density (<em>X<sub>3</sub></em>) = 13.42 mA cm<sup>-2</sup>; contact time (<em>X<sub>4</sub></em>) = 70 min and initial electrodes gap (<em>X<sub>5</sub></em>) = 1.0 cm] using RSM and ANN, respectively. Techno-economic efficacy is determined in terms of an operating cost as ₹114.82 m<sup>-3</sup>. The physico-chemical properties of the EC process generated sludge are analyzed using FTIR and FESEM/EDX. The comparative analysis with previous studies and future perspectives of the EC process for the removal of RB 4 from wastewater is also carried out.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in sustainable turquoise hydrogen production via methane pyrolysis in molten metals 熔融金属甲烷热解可持续制氢研究进展
Cleaner Chemical Engineering Pub Date : 2024-12-13 DOI: 10.1016/j.clce.2024.100139
Dr. Alberto Boretti
{"title":"Advances in sustainable turquoise hydrogen production via methane pyrolysis in molten metals","authors":"Dr. Alberto Boretti","doi":"10.1016/j.clce.2024.100139","DOIUrl":"10.1016/j.clce.2024.100139","url":null,"abstract":"<div><div>This narrative review explores recent advancements in turquoise hydrogen production via methane pyrolysis in molten metals, a promising approach for low-carbon hydrogen generation that addresses the environmental challenges of traditional steam methane reforming (SMR). This technology uses molten metals to decompose methane into hydrogen and solid carbon, offering a pathway with a favorable life cycle assessment (LCA) compared to SMR. By integrating renewable energy sources, utilizing biomethane, and managing solid carbon byproducts, molten metals methane pyrolysis has the potential to meet stringent environmental goals. However, the technology remains in an early stage, with considerable challenges related to scalability, material durability at high temperatures, and efficient heat management. Industrial viability depends on advancements in reactor design, corrosion-resistant materials, and monitoring systems. While molten metal methane pyrolysis shows environmental promise, it is too early to determine its suitability as the preferred technology for large-scale turquoise hydrogen production. Ongoing research in reactor optimization, carbon byproduct handling, and renewable integration will be critical to fully realizing the potential of this technology, especially for deployment in natural gas-rich regions.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents 重金属去除研究进展:氧化铁纳米颗粒和微藻吸附剂的应用
Cleaner Chemical Engineering Pub Date : 2024-12-09 DOI: 10.1016/j.clce.2024.100137
Nomthandazo Precious Sibiya , Thembisile Patience Mahlangu , Emmanuel Kweinor Tetteh , Sudesh Rathilal
{"title":"Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents","authors":"Nomthandazo Precious Sibiya ,&nbsp;Thembisile Patience Mahlangu ,&nbsp;Emmanuel Kweinor Tetteh ,&nbsp;Sudesh Rathilal","doi":"10.1016/j.clce.2024.100137","DOIUrl":"10.1016/j.clce.2024.100137","url":null,"abstract":"<div><div>Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized MgONanoparticle integrated with PVDF-PEG fibre enhances strength and contaminant separation efficacy 功能化氧化镁颗粒与聚偏氟乙烯-聚乙二醇纤维相结合,增强了强度和污染物分离效果
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100135
Mohammed Abdulsalam , Mohammed Umar Abba , Ibrahim Babangida Dalha , Badruddeen Saulawa Sani , Katibi Kayode Kamil , Kiman Silas , Ibrahim Garba Shitu , Bello Suleiman
{"title":"Functionalized MgONanoparticle integrated with PVDF-PEG fibre enhances strength and contaminant separation efficacy","authors":"Mohammed Abdulsalam ,&nbsp;Mohammed Umar Abba ,&nbsp;Ibrahim Babangida Dalha ,&nbsp;Badruddeen Saulawa Sani ,&nbsp;Katibi Kayode Kamil ,&nbsp;Kiman Silas ,&nbsp;Ibrahim Garba Shitu ,&nbsp;Bello Suleiman","doi":"10.1016/j.clce.2024.100135","DOIUrl":"10.1016/j.clce.2024.100135","url":null,"abstract":"<div><div>The constituent recalcitrant color pigments and other organic pollutants (such as COD, and MLSS) in palm oil mill effluent (POME) are detrimental, yet the commonly employed conventional remediation method has been inefficient. This study focused on the development of an innovative hybrid membrane designed for efficient decolorization and separation of pollutants. The research involves the incorporation of magnesium oxide (MgO) nanoparticles at a varied loading (0.0–0.75 wt%) into polyvinylidene fluoride (PVDF) and polyethylene-glycol (PEG) hollow-fiber using blending dry-jet wet-swirling phase inversion technique. Initially, the crystallinity and purity of the MgO were examined using X-ray diffraction before the application. Then, morphological characteristics, elemental constituents, mechanical strength, and thermal stability of the resultant membranes were examined using Scanning Electron Microscopy, Energy Diffraction X-ray, tensile loading, and thermogravimetric analysis. The performance results indicated that the membrane sample with the nanoparticles MgO-0.50wt% demonstrated superior mechanical and thermal stability, as well as separation performance. The membrane was able to remove the colorants, COD, suspended solids, total nitrogen, and turbidity by 80.05, 94.10, 98.67, 87.02, and 96.01 %, respectively. Additionally, the sample has the highest flux recovery ratio of 0.929 (or 92.9 %) with a minimal irreversible fouling ratio of 0.071 (or 7.1 %). The regeneration and reusability analysis indicates that at the end of the 4th filtration cycle, the modified membrane (0.50 wt% MgO) exhibited only a 23.22 % reduction in permeability flux. This finding suggests that the nanoparticles MgO 0.50wt% PVDF/PEG sample is a promising technology for POME treatment.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation the efficiency of individual organic coagulants and associated with aluminum sulfate in the removal of colloidal substances from Rio Doce, Minas Gerais, Brazil 评价单个有机混凝剂和硫酸铝在去除巴西米纳斯吉拉斯州里约热内卢Doce胶状物质中的效率
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100134
Letícia Reggiane de Carvalho Costa, Igor Ferreira Fioravante
{"title":"Evaluation the efficiency of individual organic coagulants and associated with aluminum sulfate in the removal of colloidal substances from Rio Doce, Minas Gerais, Brazil","authors":"Letícia Reggiane de Carvalho Costa,&nbsp;Igor Ferreira Fioravante","doi":"10.1016/j.clce.2024.100134","DOIUrl":"10.1016/j.clce.2024.100134","url":null,"abstract":"<div><div>The conventional water treatment process, involving primary, secondary, and tertiary stages, frequently employs chemical coagulants like aluminum sulfate during coagulation/flocculation. However, this practice generates residues with high concentrations of harmful inorganic salts, posing environmental and operational challenges. This study investigates the use of natural organic coagulants as sustainable and effective alternatives, emphasizing their potential to reduce residual inorganic content and leverage resources already present in the environment. Water samples from the Rio Doce in Santana do Paraíso, MG—impacted by the 2015 Fundão tailings dam collapse (SAMARCO)—were treated using Jar-test equipment to simulate coagulation/flocculation and sedimentation processes. The performance of aluminum sulfate, Tanfloc SG, and <em>Moringa oleifera Lam</em> was evaluated for turbidity removal, color reduction, and pH stability. While aluminum sulfate achieved 92 % turbidity and 83 % color removal, the natural coagulants demonstrated competitive results: Tanfloc SG achieved 83 % turbidity and 70 % color removal, and <em>M. oleifera Lam</em> achieved 75 % turbidity and 65 % color removal. Remarkably, combining aluminum sulfate with <em>M. oleifera</em> enhanced removal efficiencies to 99 % for both turbidity and color, with minimal pH variation. The findings highlight the advantages of natural coagulants, including lower residual inorganic waste and the opportunity to repurpose environmentally available resources, making them a promising alternative to conventional aluminum-based coagulants. This approach contributes to more sustainable water treatment practices, particularly for areas impacted by environmental disasters.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of industrial brine sludge waste for augmented spray dry scrubbing of SO₂ using hygroscopic additives 工业卤水污泥废弃物增湿性喷雾干燥洗涤so2的研究
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100136
B.J. Chepkonga , L. Koech , H.L. Rutto , R.S. Makomere , E.K. Suter
{"title":"Valorization of industrial brine sludge waste for augmented spray dry scrubbing of SO₂ using hygroscopic additives","authors":"B.J. Chepkonga ,&nbsp;L. Koech ,&nbsp;H.L. Rutto ,&nbsp;R.S. Makomere ,&nbsp;E.K. Suter","doi":"10.1016/j.clce.2024.100136","DOIUrl":"10.1016/j.clce.2024.100136","url":null,"abstract":"<div><div>Detailed experiments were conducted using a laboratory-scale spray dryer under controlled conditions to investigate the effects of highly hygroscopic additives on the performance of hydrated lime (Ca(OH)<sub>2</sub>) in spray dry scrubbing (SDS) of sulfur dioxide (SO<sub>2</sub>). The experiment involved the preparation of hydrated lime sorbent from industrial brine sludge waste (IBSW) as the starting material. The evaluated additives included sodium hydroxide, ammonium nitrate, ammonium chloride, sodium chloride, and urea. The additives were chosen based on their hygroscopicity, as it is understood that the degree of desulfurization and sorbent conversion in an SDS is significantly enhanced in the prolonged liquid phase. Experiments were conducted at a constant inlet flue gas temperature of 140 °C, sorbent particle size of -45μm, while the calcium to sulfur (Ca:S) ratio was varied in the range of 1.0 - 2.5. Slurry with 10 wt. % Ca(OH)<sub>2</sub> was used while varying the additive concentration from 2 to 8 wt. %. The experimental findings revealed that all the investigated additives, except urea, promoted the removal efficiency of SO<sub>2</sub> above baseline. Sodium hydroxide was the best-performing additive achieving 92.06 % SO<sub>2</sub> removal efficiency and a calcium conversion of 54.59 %. Fourier-transform infrared spectroscopy (FTIR) analysis showed traces of additives present in the sulfation products. Similarly, X-Ray diffraction (XRD) analysis on the final product showed the presence of desulfurization products and the respective additive compounds. Scanning electron microscopy (SEM) depicted reaction products particles as course, irregular, and deformed.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the influence of thermodynamic equation of state and simulation software on modelling the CO2 solubility in physical solvents 评估热力学状态方程和模拟软件对模拟二氧化碳在物理溶剂中溶解度的影响
Cleaner Chemical Engineering Pub Date : 2024-11-19 DOI: 10.1016/j.clce.2024.100132
Mohsen Abbaszadeh
{"title":"Assessing the influence of thermodynamic equation of state and simulation software on modelling the CO2 solubility in physical solvents","authors":"Mohsen Abbaszadeh","doi":"10.1016/j.clce.2024.100132","DOIUrl":"10.1016/j.clce.2024.100132","url":null,"abstract":"<div><div>The most useful physical solvents in the industry are Propylene Carbonate (Fluor Solvent<sup>SM</sup>), Methanol (Rectisol), Dimethyl Ether of Polyethylene Glycol (DEPG - Selexol) and Sulfolane. To address the challenge of choosing the right software and property package, two commercial software packages, HYSYS 14.0 and ProMax 6.0, are used to model the CO<sub>2</sub> solubility experimental data in the above physical solvents at operating pressures and temperatures as this two software are the most applicable software in gas treating simulations. The property packages of Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) and their regressed versions for CO2 capture purposes by Fluor Corporation and Bryan Research and Engineering LLC are utilized. The results show that the HYSYS Fluor property package demonstrates the strongest agreement with experimental CO<sub>2</sub> solubility data in propylene carbonate. In the case of CO<sub>2</sub> solubility in methanol, despite HYSYS showing a warning and guiding user to choose Acid Gas property package, HYSYS PR offers a more accurate match below 273.15 K compared with HYSYS Acid Gas and HYSYS Fluor property package and ProMax Polar property packages. ProMax PR and SRK demonstrate a stronger performance in modelling CO<sub>2</sub> solubility in sulfolane at all temperatures compared to HYSYS. Both the HYSYS PR and SRK property packages show a high accuracy in modelling CO<sub>2</sub> solubility data in DEPG.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of olive leaf extract on the physicochemical properties of bio-based hair clipper lubricating oil developed from Neem seed oil 橄榄叶提取物对楝树籽油开发的生物基理发剪润滑油理化特性的影响
Cleaner Chemical Engineering Pub Date : 2024-11-17 DOI: 10.1016/j.clce.2024.100128
Delkoumnode Bassol Marius , Yinka Sofihullahi Sanusi , Shitu Abubakar , Muhammad Usman Kaisan
{"title":"Effect of olive leaf extract on the physicochemical properties of bio-based hair clipper lubricating oil developed from Neem seed oil","authors":"Delkoumnode Bassol Marius ,&nbsp;Yinka Sofihullahi Sanusi ,&nbsp;Shitu Abubakar ,&nbsp;Muhammad Usman Kaisan","doi":"10.1016/j.clce.2024.100128","DOIUrl":"10.1016/j.clce.2024.100128","url":null,"abstract":"<div><div>Nowadays, mineral-based oil is the most popular used lubricant in hair-clipper applications. However, producing these petroleum-based lubricants contributes to environmental pollution and climate change. This study explores the effect of olive leaf extract on the physicochemical properties of a bio-based hair clipper lubricating oil derived from neem seed oil. Neem crude oil was synthesised using a double transesterification method to develop a neem bio-based hair clipper lubricating oil. The produce neem bio-lubricant was blended with olive leaf extract at concentrations of 50 mg/ml, 100 mg/ml, and 200 mg/ml to enhance its anti-bacterial properties. The physicochemical properties of the blend, including viscosity, density, flash point, and pour point, were evaluated to determine its suitability as a sustainable alternative to conventional clipper oil. The results indicated that the flash point of the blended bio-based hair clipper lubricating oil was 180 °C, 195 °C, and 210 °C respectively, and they were found to be within the minimum requirement of the ISO standard value (EN ISO 2719) and above the conventional clipper oil (129 °C). From the pour point values obtained, the blended bio-lubricant offers a poorer value of 3 °C and 8 °C compared to that of ISO standard value (ISO standard 3016) and conventional clipper oil (-40 to -6 °C). It was also observed that the viscosities of 14.5 cSt, 15.6 cSt, and 16.7 cSt for the blended bio-lubricant conform with the minimum requirement of the ISO standard value (EN ISO 3104) and that of conventional clipper oil (7.5 to 90 cSt) at 40 °C. The density values of the blended bio-lubricant (0.897, 0.898, and 0.902) were found to be slightly above that of the ISO standard value (EN ISO 12185) and the conventional clipper oil (0.85–0.88). The antibacterial sensitivity test results of the blended bio-lubricant demonstrated a broad spectrum of activity against all tested microorganisms at both high and low concentrations, except for Escherichia coli, which showed moderate sensitivity at low concentrations (50 mg/mL). In general, the results of this work show that the bio-based hair clipper lubricating oil is a potential alternative to conventional clipper oil.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorptive processes applied to the defluorination of groundwater for human consumption 应用于人类饮用地下水脱氟的吸附过程
Cleaner Chemical Engineering Pub Date : 2024-11-17 DOI: 10.1016/j.clce.2024.100131
Júlia Toffoli De Oliveira , Letícia Reggiane de Carvalho Costa , Keila Guerra Pacheco Nunes , Vanessa Jurado-Davila , Robson Alves de Oliveira , Elvis Carissimi , Liliana Amaral Féris
{"title":"Adsorptive processes applied to the defluorination of groundwater for human consumption","authors":"Júlia Toffoli De Oliveira ,&nbsp;Letícia Reggiane de Carvalho Costa ,&nbsp;Keila Guerra Pacheco Nunes ,&nbsp;Vanessa Jurado-Davila ,&nbsp;Robson Alves de Oliveira ,&nbsp;Elvis Carissimi ,&nbsp;Liliana Amaral Féris","doi":"10.1016/j.clce.2024.100131","DOIUrl":"10.1016/j.clce.2024.100131","url":null,"abstract":"<div><div>Contamination of groundwater by fluoride ions can occur through both natural and anthropogenic activities, such as the discharge of industrial waste containing this compound. Thus, effective fluoride removal from groundwater is essential to ensure safe drinking water. This study evaluated the performance of adsorption techniques for defluoridating groundwater in Rio Grande do Sul, Brazil. Preliminary tests were conducted using synthetic solutions with a fluoride concentration of 5 mg.L<sup>−1</sup>, applying several adsorbents. Additionally, an ultrasonic process was used to synthesize an adsorbent from activated alumina pre-treated with carbon (AACP) and modified with ZnCl₂ (AA-ZnCl₂). The AACP and AA-ZnCl<sub>2</sub> were characterized through BET, EDS, scanning electron microscopy, X-ray diffraction (XRD), and FT-IR analysis. A Central Composite Design and response surface methodology were applied to optimize adsorption efficiency, focusing these factors: pH and adsorbent dosage. Kinetic and isotherm adsorption tests were conducted for both AACP and AA-ZnCl₂. The results showed that AACP achieved fluoride removal efficiencies of 65.4 % in synthetic solutions and 38.6 % in groundwater. The AA-ZnCl₂ demonstrated superior performance, removing over 98 % of fluoride in synthetic solutions and 55.4 % in groundwater, across a pH range of 4 to 10, with an optimal solid dosage of 3 g.L<sup>−1</sup>. For an initial fluoride concentration of 5 mg.L<sup>−1</sup>, a removal efficiency of 97.4 % was achieved within 5 min of contact time. The kinetic adsorption data were best described by the pseudo-second-order model, while the Freundlich isotherm model provided the best fit for the adsorption isotherm data. The findings in this work indicate hat ZnCl₂-modified activated alumina, synthesized with ultrasonic assistance, is highly effective for defluoridating groundwater for safe human consumption being an alternative method to be implemented in an industrial scale.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信