重金属去除研究进展:氧化铁纳米颗粒和微藻吸附剂的应用

Nomthandazo Precious Sibiya , Thembisile Patience Mahlangu , Emmanuel Kweinor Tetteh , Sudesh Rathilal
{"title":"重金属去除研究进展:氧化铁纳米颗粒和微藻吸附剂的应用","authors":"Nomthandazo Precious Sibiya ,&nbsp;Thembisile Patience Mahlangu ,&nbsp;Emmanuel Kweinor Tetteh ,&nbsp;Sudesh Rathilal","doi":"10.1016/j.clce.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents\",\"authors\":\"Nomthandazo Precious Sibiya ,&nbsp;Thembisile Patience Mahlangu ,&nbsp;Emmanuel Kweinor Tetteh ,&nbsp;Sudesh Rathilal\",\"doi\":\"10.1016/j.clce.2024.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.</div></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782324000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782324000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业废水含有几种高毒性物质,污染了水并损害了自然资源。另一方面,废水中重金属的存在限制了主要有机污染物的生物降解性,使其转化为长期的生态系统成分。膜分离法、深度氧化法和吸附法都已被用于废水处理,但吸附法因其技术要求低、吸附剂用量少、污染物去除率高而被证明是首选。因此,合成新型吸附剂是一种已经产生了有希望的结果并引起广泛关注的方法。近年来,在生物吸附剂上固定化微生物细胞以减少污染物的研究引起了人们的极大兴趣。与其他生物处理技术相比,生物吸附剂固定化微生物可以提高微生物丰度、重复利用率、微生物代谢能力等。然而,对这种方法的研究仍处于早期阶段。生物吸附剂与微生物之间的相互作用很少受到关注,许多研究项目仅限于实验室环境。需要进一步的解释来解决诸如生物吸附剂吸附后残留污染物的回收和二次污染等问题。本文详细介绍了基于生物吸附剂的废水处理技术。研究了固定化微生物的机理,并评价了其在生物吸附剂处理废水中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents
Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信