Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents

Nomthandazo Precious Sibiya , Thembisile Patience Mahlangu , Emmanuel Kweinor Tetteh , Sudesh Rathilal
{"title":"Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents","authors":"Nomthandazo Precious Sibiya ,&nbsp;Thembisile Patience Mahlangu ,&nbsp;Emmanuel Kweinor Tetteh ,&nbsp;Sudesh Rathilal","doi":"10.1016/j.clce.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782324000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信