Cleaner Chemical Engineering最新文献

筛选
英文 中文
Evaluation the efficiency of individual organic coagulants and associated with aluminum sulfate in the removal of colloidal substances from Rio Doce, Minas Gerais, Brazil
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100134
Letícia Reggiane de Carvalho Costa, Igor Ferreira Fioravante
{"title":"Evaluation the efficiency of individual organic coagulants and associated with aluminum sulfate in the removal of colloidal substances from Rio Doce, Minas Gerais, Brazil","authors":"Letícia Reggiane de Carvalho Costa,&nbsp;Igor Ferreira Fioravante","doi":"10.1016/j.clce.2024.100134","DOIUrl":"10.1016/j.clce.2024.100134","url":null,"abstract":"<div><div>The conventional water treatment process, involving primary, secondary, and tertiary stages, frequently employs chemical coagulants like aluminum sulfate during coagulation/flocculation. However, this practice generates residues with high concentrations of harmful inorganic salts, posing environmental and operational challenges. This study investigates the use of natural organic coagulants as sustainable and effective alternatives, emphasizing their potential to reduce residual inorganic content and leverage resources already present in the environment. Water samples from the Rio Doce in Santana do Paraíso, MG—impacted by the 2015 Fundão tailings dam collapse (SAMARCO)—were treated using Jar-test equipment to simulate coagulation/flocculation and sedimentation processes. The performance of aluminum sulfate, Tanfloc SG, and <em>Moringa oleifera Lam</em> was evaluated for turbidity removal, color reduction, and pH stability. While aluminum sulfate achieved 92 % turbidity and 83 % color removal, the natural coagulants demonstrated competitive results: Tanfloc SG achieved 83 % turbidity and 70 % color removal, and <em>M. oleifera Lam</em> achieved 75 % turbidity and 65 % color removal. Remarkably, combining aluminum sulfate with <em>M. oleifera</em> enhanced removal efficiencies to 99 % for both turbidity and color, with minimal pH variation. The findings highlight the advantages of natural coagulants, including lower residual inorganic waste and the opportunity to repurpose environmentally available resources, making them a promising alternative to conventional aluminum-based coagulants. This approach contributes to more sustainable water treatment practices, particularly for areas impacted by environmental disasters.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of industrial brine sludge waste for augmented spray dry scrubbing of SO₂ using hygroscopic additives
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100136
B.J. Chepkonga , L. Koech , H.L. Rutto , R.S. Makomere , E.K. Suter
{"title":"Valorization of industrial brine sludge waste for augmented spray dry scrubbing of SO₂ using hygroscopic additives","authors":"B.J. Chepkonga ,&nbsp;L. Koech ,&nbsp;H.L. Rutto ,&nbsp;R.S. Makomere ,&nbsp;E.K. Suter","doi":"10.1016/j.clce.2024.100136","DOIUrl":"10.1016/j.clce.2024.100136","url":null,"abstract":"<div><div>Detailed experiments were conducted using a laboratory-scale spray dryer under controlled conditions to investigate the effects of highly hygroscopic additives on the performance of hydrated lime (Ca(OH)<sub>2</sub>) in spray dry scrubbing (SDS) of sulfur dioxide (SO<sub>2</sub>). The experiment involved the preparation of hydrated lime sorbent from industrial brine sludge waste (IBSW) as the starting material. The evaluated additives included sodium hydroxide, ammonium nitrate, ammonium chloride, sodium chloride, and urea. The additives were chosen based on their hygroscopicity, as it is understood that the degree of desulfurization and sorbent conversion in an SDS is significantly enhanced in the prolonged liquid phase. Experiments were conducted at a constant inlet flue gas temperature of 140 °C, sorbent particle size of -45μm, while the calcium to sulfur (Ca:S) ratio was varied in the range of 1.0 - 2.5. Slurry with 10 wt. % Ca(OH)<sub>2</sub> was used while varying the additive concentration from 2 to 8 wt. %. The experimental findings revealed that all the investigated additives, except urea, promoted the removal efficiency of SO<sub>2</sub> above baseline. Sodium hydroxide was the best-performing additive achieving 92.06 % SO<sub>2</sub> removal efficiency and a calcium conversion of 54.59 %. Fourier-transform infrared spectroscopy (FTIR) analysis showed traces of additives present in the sulfation products. Similarly, X-Ray diffraction (XRD) analysis on the final product showed the presence of desulfurization products and the respective additive compounds. Scanning electron microscopy (SEM) depicted reaction products particles as course, irregular, and deformed.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the influence of thermodynamic equation of state and simulation software on modelling the CO2 solubility in physical solvents 评估热力学状态方程和模拟软件对模拟二氧化碳在物理溶剂中溶解度的影响
Cleaner Chemical Engineering Pub Date : 2024-11-19 DOI: 10.1016/j.clce.2024.100132
Mohsen Abbaszadeh
{"title":"Assessing the influence of thermodynamic equation of state and simulation software on modelling the CO2 solubility in physical solvents","authors":"Mohsen Abbaszadeh","doi":"10.1016/j.clce.2024.100132","DOIUrl":"10.1016/j.clce.2024.100132","url":null,"abstract":"<div><div>The most useful physical solvents in the industry are Propylene Carbonate (Fluor Solvent<sup>SM</sup>), Methanol (Rectisol), Dimethyl Ether of Polyethylene Glycol (DEPG - Selexol) and Sulfolane. To address the challenge of choosing the right software and property package, two commercial software packages, HYSYS 14.0 and ProMax 6.0, are used to model the CO<sub>2</sub> solubility experimental data in the above physical solvents at operating pressures and temperatures as this two software are the most applicable software in gas treating simulations. The property packages of Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) and their regressed versions for CO2 capture purposes by Fluor Corporation and Bryan Research and Engineering LLC are utilized. The results show that the HYSYS Fluor property package demonstrates the strongest agreement with experimental CO<sub>2</sub> solubility data in propylene carbonate. In the case of CO<sub>2</sub> solubility in methanol, despite HYSYS showing a warning and guiding user to choose Acid Gas property package, HYSYS PR offers a more accurate match below 273.15 K compared with HYSYS Acid Gas and HYSYS Fluor property package and ProMax Polar property packages. ProMax PR and SRK demonstrate a stronger performance in modelling CO<sub>2</sub> solubility in sulfolane at all temperatures compared to HYSYS. Both the HYSYS PR and SRK property packages show a high accuracy in modelling CO<sub>2</sub> solubility data in DEPG.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of olive leaf extract on the physicochemical properties of bio-based hair clipper lubricating oil developed from Neem seed oil 橄榄叶提取物对楝树籽油开发的生物基理发剪润滑油理化特性的影响
Cleaner Chemical Engineering Pub Date : 2024-11-17 DOI: 10.1016/j.clce.2024.100128
Delkoumnode Bassol Marius , Yinka Sofihullahi Sanusi , Shitu Abubakar , Muhammad Usman Kaisan
{"title":"Effect of olive leaf extract on the physicochemical properties of bio-based hair clipper lubricating oil developed from Neem seed oil","authors":"Delkoumnode Bassol Marius ,&nbsp;Yinka Sofihullahi Sanusi ,&nbsp;Shitu Abubakar ,&nbsp;Muhammad Usman Kaisan","doi":"10.1016/j.clce.2024.100128","DOIUrl":"10.1016/j.clce.2024.100128","url":null,"abstract":"<div><div>Nowadays, mineral-based oil is the most popular used lubricant in hair-clipper applications. However, producing these petroleum-based lubricants contributes to environmental pollution and climate change. This study explores the effect of olive leaf extract on the physicochemical properties of a bio-based hair clipper lubricating oil derived from neem seed oil. Neem crude oil was synthesised using a double transesterification method to develop a neem bio-based hair clipper lubricating oil. The produce neem bio-lubricant was blended with olive leaf extract at concentrations of 50 mg/ml, 100 mg/ml, and 200 mg/ml to enhance its anti-bacterial properties. The physicochemical properties of the blend, including viscosity, density, flash point, and pour point, were evaluated to determine its suitability as a sustainable alternative to conventional clipper oil. The results indicated that the flash point of the blended bio-based hair clipper lubricating oil was 180 °C, 195 °C, and 210 °C respectively, and they were found to be within the minimum requirement of the ISO standard value (EN ISO 2719) and above the conventional clipper oil (129 °C). From the pour point values obtained, the blended bio-lubricant offers a poorer value of 3 °C and 8 °C compared to that of ISO standard value (ISO standard 3016) and conventional clipper oil (-40 to -6 °C). It was also observed that the viscosities of 14.5 cSt, 15.6 cSt, and 16.7 cSt for the blended bio-lubricant conform with the minimum requirement of the ISO standard value (EN ISO 3104) and that of conventional clipper oil (7.5 to 90 cSt) at 40 °C. The density values of the blended bio-lubricant (0.897, 0.898, and 0.902) were found to be slightly above that of the ISO standard value (EN ISO 12185) and the conventional clipper oil (0.85–0.88). The antibacterial sensitivity test results of the blended bio-lubricant demonstrated a broad spectrum of activity against all tested microorganisms at both high and low concentrations, except for Escherichia coli, which showed moderate sensitivity at low concentrations (50 mg/mL). In general, the results of this work show that the bio-based hair clipper lubricating oil is a potential alternative to conventional clipper oil.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorptive processes applied to the defluorination of groundwater for human consumption 应用于人类饮用地下水脱氟的吸附过程
Cleaner Chemical Engineering Pub Date : 2024-11-17 DOI: 10.1016/j.clce.2024.100131
Júlia Toffoli De Oliveira , Letícia Reggiane de Carvalho Costa , Keila Guerra Pacheco Nunes , Vanessa Jurado-Davila , Robson Alves de Oliveira , Elvis Carissimi , Liliana Amaral Féris
{"title":"Adsorptive processes applied to the defluorination of groundwater for human consumption","authors":"Júlia Toffoli De Oliveira ,&nbsp;Letícia Reggiane de Carvalho Costa ,&nbsp;Keila Guerra Pacheco Nunes ,&nbsp;Vanessa Jurado-Davila ,&nbsp;Robson Alves de Oliveira ,&nbsp;Elvis Carissimi ,&nbsp;Liliana Amaral Féris","doi":"10.1016/j.clce.2024.100131","DOIUrl":"10.1016/j.clce.2024.100131","url":null,"abstract":"<div><div>Contamination of groundwater by fluoride ions can occur through both natural and anthropogenic activities, such as the discharge of industrial waste containing this compound. Thus, effective fluoride removal from groundwater is essential to ensure safe drinking water. This study evaluated the performance of adsorption techniques for defluoridating groundwater in Rio Grande do Sul, Brazil. Preliminary tests were conducted using synthetic solutions with a fluoride concentration of 5 mg.L<sup>−1</sup>, applying several adsorbents. Additionally, an ultrasonic process was used to synthesize an adsorbent from activated alumina pre-treated with carbon (AACP) and modified with ZnCl₂ (AA-ZnCl₂). The AACP and AA-ZnCl<sub>2</sub> were characterized through BET, EDS, scanning electron microscopy, X-ray diffraction (XRD), and FT-IR analysis. A Central Composite Design and response surface methodology were applied to optimize adsorption efficiency, focusing these factors: pH and adsorbent dosage. Kinetic and isotherm adsorption tests were conducted for both AACP and AA-ZnCl₂. The results showed that AACP achieved fluoride removal efficiencies of 65.4 % in synthetic solutions and 38.6 % in groundwater. The AA-ZnCl₂ demonstrated superior performance, removing over 98 % of fluoride in synthetic solutions and 55.4 % in groundwater, across a pH range of 4 to 10, with an optimal solid dosage of 3 g.L<sup>−1</sup>. For an initial fluoride concentration of 5 mg.L<sup>−1</sup>, a removal efficiency of 97.4 % was achieved within 5 min of contact time. The kinetic adsorption data were best described by the pseudo-second-order model, while the Freundlich isotherm model provided the best fit for the adsorption isotherm data. The findings in this work indicate hat ZnCl₂-modified activated alumina, synthesized with ultrasonic assistance, is highly effective for defluoridating groundwater for safe human consumption being an alternative method to be implemented in an industrial scale.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of different laboratory-scale techniques for preventing coal spontaneous combustion 不同实验室规模的煤炭自燃预防技术分析
Cleaner Chemical Engineering Pub Date : 2024-11-13 DOI: 10.1016/j.clce.2024.100130
Theodora Noely Tambaria, Yuichi Sugai, Takehiro Esaki
{"title":"Analysis of different laboratory-scale techniques for preventing coal spontaneous combustion","authors":"Theodora Noely Tambaria,&nbsp;Yuichi Sugai,&nbsp;Takehiro Esaki","doi":"10.1016/j.clce.2024.100130","DOIUrl":"10.1016/j.clce.2024.100130","url":null,"abstract":"<div><div>The focus of this study is to investigate laboratory-scale techniques aimed at preventing an increase in heat flux, which can potentially lead to spontaneous coal combustion. This research involves two pieces of equipment designed to analyze the heat flux on untreated coal and coal treated with polyvinyl alcohol (PVA). The laboratory equipment consists of a copper cell capable of holding up to 75 ml of coal samples and an aluminum cell designed to accommodate up to 3.17 ml of coal samples. The results on untreated coal showed that copper cell had a higher heat flux and took longer to reach the heat flux peak than aluminum cell. The aluminum cell provided more excellent stability, resulting in consistent heat distribution and dependable outcomes. The analysis using copper and aluminum cells on coal treated with PVA indicates that PVA can effectively reduce the heat of combustion by 35 %. This finding could have significant implications for future coal combustion studies. This study provides valuable insights for future research into coal spontaneous combustion experiments and using PVA to prevent spontaneous coal combustion.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization, Kinetics and thermodynamic modeling of pulp production from plantain stem using the kraft process
Cleaner Chemical Engineering Pub Date : 2024-11-10 DOI: 10.1016/j.clce.2024.100129
Effi Evelyn, Akindele Oyetunde Okewale, Chiedu Ngozi Owabor
{"title":"Optimization, Kinetics and thermodynamic modeling of pulp production from plantain stem using the kraft process","authors":"Effi Evelyn,&nbsp;Akindele Oyetunde Okewale,&nbsp;Chiedu Ngozi Owabor","doi":"10.1016/j.clce.2024.100129","DOIUrl":"10.1016/j.clce.2024.100129","url":null,"abstract":"<div><div>Pulp production is a very essential industrial process. This study employed response surface methodology (RSM) with a central composite design of experiment (CCD) to determine the best process conditions for kraft pulp production from plantain stems. The pulp pseudo-stem was physically pretreated by shredding, drying, grinding, and sieving. Kraft pulping was conducted using the CCD of the experiment and the process was optimized using RSM. The independent variables include the mass ratio of Sodium Hydroxide to Sodium Sulphide, temperature, and time, while the response is the pulp yield. The analysis of variance showed that the temperature, time, and ratio of NaOH to Na2S were significant. The obtained coefficient of determination (R²) value is 0.9125, which indicates a strong correlation is consistent with the adjusted (R²) value of 0.964. Optimum temperature, time, and NaOH: Na2S ratio values obtained at optimum were 110.50 C, 146.88 min, and 3.372. The yield of pulp obtained at this optimum process variable is 55.064 wt%. The mechanistic and thermodynamics results showed that at a higher model fit R<sup>2</sup> value of 0.9977, rate constant of 6.3 × 10<sup>–3</sup>min<sup>-1</sup>, and lower activation energy value of 29.523 KJ/kg confirmed that the pseudo-first-order best described the kinetics of the pulp production process compared to the pseudo-second-order kinetics with activation energy value of 40.997 KJ/kg at R<sup>2</sup> =0.9834. From this study, optimization of the process helps to maximize the Pulp yield while minimizing the resource consumption which in turn will also help to reduce the cost of production.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technological maturity and future perspectives for green diesel production in Brazil 巴西绿色柴油生产的技术成熟度和未来前景
Cleaner Chemical Engineering Pub Date : 2024-10-30 DOI: 10.1016/j.clce.2024.100127
Lucas Sudré dos Santos, Henrique Gasparetto, Nina Paula Gonçalves Salau
{"title":"Technological maturity and future perspectives for green diesel production in Brazil","authors":"Lucas Sudré dos Santos,&nbsp;Henrique Gasparetto,&nbsp;Nina Paula Gonçalves Salau","doi":"10.1016/j.clce.2024.100127","DOIUrl":"10.1016/j.clce.2024.100127","url":null,"abstract":"<div><div>During technological and social development, non-renewable sources were used to generate energy in various forms. The overexploitation of fossil fuel sources has raised significant concerns about environmental impacts. Given the need to transition to developing a more sustainable energy matrix, biofuels play an essential role as the transport sector contributes to a large percentage of gas emissions into the atmosphere. Among them, green diesel is an advanced biofuel obtained on an industrial scale, mainly by the catalytic hydrotreating of vegetable oils. In terms of technology and properties, green diesel stands out as a drop-in biofuel, which lacks blending restrictions with conventional diesel due to its chemical similarity. This biofuel also contains fewer impurities and has better combustion performance and an efficient production process. The leading green diesel manufacturing technologies are the main topic of this technological prospection review. Their particularities regarding industrial maturity are discussed, and challenges, opportunities, and drawbacks are considered and discussed for the Brazilian scenario. This analysis shows that although existing technologies have higher technological maturity, Brazil would have a special tendency toward catalytic hydrotreating for producing renewable diesel.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the gold nanoparticles' Synthesis and application in dye degradation 金纳米粒子的合成及在染料降解中的应用综述
Cleaner Chemical Engineering Pub Date : 2024-10-26 DOI: 10.1016/j.clce.2024.100126
Irum Jamil , Fawad Ahmad , Muhammad Imran Khan , Abdallah Shanableh , Nosheen Farooq , Saima Anjum , Muhammad Babar Taj
{"title":"A review of the gold nanoparticles' Synthesis and application in dye degradation","authors":"Irum Jamil ,&nbsp;Fawad Ahmad ,&nbsp;Muhammad Imran Khan ,&nbsp;Abdallah Shanableh ,&nbsp;Nosheen Farooq ,&nbsp;Saima Anjum ,&nbsp;Muhammad Babar Taj","doi":"10.1016/j.clce.2024.100126","DOIUrl":"10.1016/j.clce.2024.100126","url":null,"abstract":"<div><div>In this review, we covered the recent advances in the synthesis of gold nanoparticles (AuNPs) and their uses in the degradation of dyes. This study provides a framework to develop a low-cost, eco-friendly, and highly efficient synthesis of AuNPs. From these synthesis methods, toxic by-products are not produced. The present study focuses on the removal of dyes by AuNPs because AuNPs act as suitable absorbents for dyes in a short time. Synthesis of AuNPs from plant extracts, e.g., marine alga, Scutellarin Barbata, Alpinia nigra, Fruit peels, Bacillus marisflavi from raw silk cocoons, amylopectin and poly acrylic acid, L. asparagine, Graphene oxide, LPEI coated AuNPs. The synthesized AuNPs were used further to remove dyes like methylene blue (MB), Rhodamine B (RB) degradation, methyl orange, acid red degradation, and Congo red.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst 在γ-氧化铝催化剂上将聚丙烯转化为运输燃料级碳氢化合物
Cleaner Chemical Engineering Pub Date : 2024-09-16 DOI: 10.1016/j.clce.2024.100124
Sathyapal R. Churipard , Adrian Alejandro Rodriguez Pinos , Sundaramurthy Vedachalam , Maliheh Heravi , Ajay K. Dalai , Saumitra Saxena , Bassam Dally
{"title":"Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst","authors":"Sathyapal R. Churipard ,&nbsp;Adrian Alejandro Rodriguez Pinos ,&nbsp;Sundaramurthy Vedachalam ,&nbsp;Maliheh Heravi ,&nbsp;Ajay K. Dalai ,&nbsp;Saumitra Saxena ,&nbsp;Bassam Dally","doi":"10.1016/j.clce.2024.100124","DOIUrl":"10.1016/j.clce.2024.100124","url":null,"abstract":"<div><p>Catalytic upgrading of plastics to valuable fuels and chemicals is an attractive route to valorize waste plastics. Herein, catalytic pyrolysis of polypropylene was performed over γ-Al<sub>2</sub>O<sub>3</sub> as a heterogeneous catalyst to produce fuel-grade hydrocarbons. The use of an inexpensive γ-Al<sub>2</sub>O<sub>3</sub> catalyst and mild reaction conditions led to high liquid yield selectively in gasoline-range hydrocarbons which stands out from most of the work reported in the literature for polypropylene pyrolysis. The reaction conditions of pyrolysis were optimized by the Box-Behnken Design approach utilizing the response surface methodology. The highest liquid yield of 88.1 wt.% was obtained at 470 °C temperature, with 2 wt.% of catalysts and 5 h reaction time. The amount of solid carbon was insignificant (0.7 wt.%) and the gas yield was 11.2 wt.%. The γ-Al<sub>2</sub>O<sub>3</sub> showed high efficiency and stability for converting polypropylene to liquid fuels. The catalyst was highly stable, reusable, and showed similar catalytic activity for 3 recycles. These features and the highly selective conversion of PP to gasoline range fuels are crucial for large-scale applications. The GC–MS analysis revealed that the liquid fuel produced mostly contained C8 to C15 hydrocarbons encompassing mostly gasoline and a small fraction of diesel fuel and higher hydrocarbons. The GC–MS data was also supported by SimDist analysis, which exhibited the boiling point ranging from 100 °C to 260 °C for the liquid fuel product. The reaction temperature and time had a significant impact on the liquid yield. The higher temperature favored the formation of the gaseous product of C1-C3 hydrocarbons. The NMR analysis showed that the liquid products mostly contained the highest amount of paraffins followed by olefins and a small fraction of aromatics. The presence of mild acidity in the γ-Al<sub>2</sub>O<sub>3</sub> catalyst and optimum reaction condition provides favorable conditions to produce the highest yield of transportation fuel grade hydrocarbons without over-cracking into gases.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000093/pdfft?md5=a381aa9a8bd76006310d6000c12790a1&pid=1-s2.0-S2772782324000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信