Hasan Ahmed , Md Ashikur Rahaman Noyon , Md. Elias Uddin , Md Mostoba Rafid , Md. Sabbir Hosen , Rama Kanta Layek
{"title":"Development and characterization of chitosan-based antimicrobial films: A sustainable alternative to plastic packaging","authors":"Hasan Ahmed , Md Ashikur Rahaman Noyon , Md. Elias Uddin , Md Mostoba Rafid , Md. Sabbir Hosen , Rama Kanta Layek","doi":"10.1016/j.clce.2025.100157","DOIUrl":"10.1016/j.clce.2025.100157","url":null,"abstract":"<div><div>The development of biodegradable bioplastic packaging is essential for reducing environmental pollution and minimizing non-biodegradable waste accumulation. In this study, a biodegradable plastic film was fabricated by blending polyvinyl alcohol (PVA), chitosan (CS) derived from shrimp shells, and gelatin (GE) in a 6:2:2 ratio. Crosslinked chitosan and zinc oxide nanoparticles (ZnONPs) at a 95:5 ratio was incorporated into the matrix, and the bioplastic film was produced via a simple solution casting method. The developed composite underwent extensive characterization, including FTIR, UV–Vis, TGA, XRD, and SEM analyses. Results indicated high thermal stability and homogeneity, as confirmed by TGA and SEM. The bioplastic exhibited superior mechanical properties, with a tensile strength of 64.68 MPa and an elongation at break of 25.38 %, along with optimal density, thickness, water absorption, and a suitable melting point. Biodegradation studies showed 80.92 % degradation in two months by soil microbes, and biotoxicity tests confirmed its safety for crops (rice seeds). Additionally, the bioplastic, containing 15.2 % chitosan, demonstrated significant antibacterial activity against both gram-positive and gram-negative bacteria, highlighting its potential as a sustainable alternative for food packaging. This study presents a promising bioplastic film with the potential to replace conventional non-biodegradable packaging while enhancing food safety through its antibacterial properties.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100157"},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew K. Gillespie , Adam D. Smith , Sean Sweeny , Mark Sweeny , Zeke A. Piskulich , Ernest Knight , Matthew Prosniewski , Samantha M. Gillespie , David Stalla
{"title":"Biowaste-derived activated carbon from spent coffee grounds for volumetric hydrogen storage","authors":"Andrew K. Gillespie , Adam D. Smith , Sean Sweeny , Mark Sweeny , Zeke A. Piskulich , Ernest Knight , Matthew Prosniewski , Samantha M. Gillespie , David Stalla","doi":"10.1016/j.clce.2025.100155","DOIUrl":"10.1016/j.clce.2025.100155","url":null,"abstract":"<div><div>Nanoporous activated carbon materials were prepared from biowaste (spent coffee grounds) as a renewable and practical system for enhanced hydrogen storage at room temperature. Chemical charring and activation with potassium hydroxide (KOH) were performed to expand the pore network, increase the specific surface area, and improve the volumetric storage capacity. These materials were characterized using helium pycnometry, nitrogen adsorption, hydrogen adsorption, and scanning electron microscopy. The activation procedure resulted in a bimodal pore size distribution and a large fraction of nanopores of 7 Å pore widths that are optimal for hydrogen storage. Specific surface areas of 2595 m<sup>2</sup>/g were achieved with a crystalline volumetric storage capacity of 9.84 g/L at room temperature and 100 bar. This corresponds to an energy density around 1.18 MJ/L, which is a 28% improvement over compressed gas alone. This biowaste-derived material has the same volumetric storage capacity as the commercially available, petroleum-derived adsorbent, Maxsorb (MSC-30) produced by Kansai Coke. This demonstrates that reversible, physical adsorption of hydrogen on materials produced from biowaste may be used as a more ecologically friendly improvement for renewable energy storage. A similar performance can be achieved by engineering a range of biowaste-based adsorbent materials that involve cleaner precursors compared to the petroleum-based adsorbent materials currently offered on the market.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermally activated adsorbent derived from kitchen biowaste for treatment of tannery wastewater","authors":"Md. Abul Hashem, Syeda Fariha Rahman, Sasbir Rahman Sium, Modinatul Maoya, Md. Mukimujjaman Miem, Afsana Akther Mimi, Md. Enamul Hasan Zahin","doi":"10.1016/j.clce.2025.100156","DOIUrl":"10.1016/j.clce.2025.100156","url":null,"abstract":"<div><div>The discharge of unprocessed tannery wastewater is a major environmental concern. It contains harmful chemicals and metals, especially chromium. This study explored the chromium adsorption on the thermally activated kitchen biowaste adsorbent (TAKBWA) from the tannery effluent. Before and after treatment, the TAKBWA were characterized through SEM, FT-IR, EDS, and pHpzc. In a batch test at optimal conditions, chromium removal was achieved at 99.92 % with an adsorbent dose of 1.2 g per 50 mL wastewater, a stirring time of 10 min, and a relative pH of 7.9. The pHpzc indicates the adsorption worked on the positive surface of TAKBWA. The adsorption was well fitted for the pseudo-second-order kinetic model and Freundlich isotherm. The thermodynamic studies ensured that adsorption was chemically regulated, spontaneous, and exothermic. The adsorption reaction was chemisorption with a greater adsorbent-adsorbate (chromium) interaction. A reduction of biochemical oxygen demand (46.0 %), chemical oxygen demand (13.5 %), and chloride (20.1 %) of the tannery effluent was achieved. Hence, TAKBWA can be considered to treat the tannery wastewater, especially chromium removal before discharge to the environment.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soybean biochar as highly efficient adsorbent for ofloxacin from aqueous and CO2 from gaseous phase: Mathematical modelling and regeneration studies","authors":"Vaishnavi Gomase , Tejaswini Rathi , Aparna Muley , D. Saravanan , Ravin Jugade","doi":"10.1016/j.clce.2025.100154","DOIUrl":"10.1016/j.clce.2025.100154","url":null,"abstract":"<div><div>This study seeks to repurpose soybean biowaste by activating and pyrolyzing it, resulting in phosphoric acid-treated soybean biochar (PTSB). The novelty of this approach lies in its ability to effectively remove both aqueous and gaseous pollutants, making it a versatile solution for environmental remediation. By transforming agricultural waste into a high-value material, this method not only promotes sustainability but also offers a dual-purpose adsorbent capable of addressing a broader range of contaminants than traditional adsorbents. This innovative process represents a significant advancement in both waste valorization and pollution control. With a substantial surface area of 289.82 m² g⁻¹, this carbonized biochar effectively adsorbs ofloxacin (OFX) from water and captures CO₂ in its gaseous form. Characterization of PTSB was conducted using various techniques. Batch adsorption experiments were optimized using response surface methodology (RSM), resulting in over 95 % adsorption efficiency. Isotherm and kinetics studies indicated that the adsorption process adheres to Langmuir adsorption isotherm and pseudo-second-order kinetics. Notably, a significant observation was made regarding the increase in adsorption with rising temperature. The maximum adsorption capacities (q<sub>m</sub>) at temperatures of 303 K, 313 K, and 323 K were determined to be 96.83 mg g<sup>−1</sup>, 147.56 mg g<sup>−1</sup>, and 201.82 mg g<sup>−1</sup>, respectively, as derived from the Langmuir adsorption isotherm. Examination of CO<sub>2</sub> sequestration at various temperatures demonstrated highest adsorption recorded at 273 K, reaching 49.96 mL g<sup>−1</sup>. Furthermore, Q<sub>st</sub> values for CO<sub>2</sub> removal were consistently below 40 kJ mol<sup>−1</sup>, indicating a physisorption process. Furthermore, mathematical modeling techniques were applied to forecast the OFX breakthrough curve and assess various removal approaches. The results of this research aid in the advancement of efficient remediation techniques aimed at reducing the environmental repercussions of OFX contamination. The study investigated the regeneration of PTSB and the degradation of OFX using reagents, UV, and gamma radiation.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143351015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deciphering methanolysis of Calophyllum inophyllum oil into biodiesel using KOH-doped Aegle marmelos biochar catalyst: Thermo-kinetics, optimization and cost analysis","authors":"Bisheswar Karmakar , Gopinath Halder","doi":"10.1016/j.clce.2025.100153","DOIUrl":"10.1016/j.clce.2025.100153","url":null,"abstract":"<div><div>The current study presents the catalysed conversion of <em>Calophyllum inophyllum</em> oil with methanol into biodiesel using a single stage approach. Here, the catalyst development essentially valorises waste <em>Aegle marmelos</em> fruit shell through carbonization and subsequent doping with KOH. An indigenously developed heterogeneous catalyst was obtained that can be easily recovered and reused multiple times, proving to be cost efficient according to calculated estimates. This also reduces fuel synthesis costs owing to drastic reduction in wastewater generation. The reaction is optimized through central composite design (CCD) using five process parameters viz. reaction temperature, duration, catalyst concentration, methanol concentration and agitation speed, which resulted in maximum fuel yield of 95.77 %. Conversion of oil was optimal using methanol at 40 %w/w concentration at 60 °C reaction temperature, when the reaction occurs for a duration of 150 min with KOH-doped catalyst at 4 %w/w concentration, requiring a high agitation speed of 850 rpm. From analysis of variance (ANOVA) studies it is clear that the developed model is consistent and statistically relevant. From kinetic and thermodynamic studies, it is seen that the base catalysed transesterification has an activation energy (<em>E<sub>a</sub></em>) = 98.895 kJ/mol and frequency factor (<em>A</em>) = 90.74 min<sup>-1</sup>, as the reaction is endothermic since enthalpy change (ΔH) was noted to be 809.64 J, along with an entropy change (ΔS) of -64.59 J/K-mol, showing it to be non-spontaneous as well as increasing order in the system.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bagherzadeh , M.H. Choopan Dastjerdi , J. Mokhtari , F. Abadian-Naeini , M. Mohsennia
{"title":"In-situ synthesize of Ag NPs/SiO2 nanocomposite by gamma ray and its application as catalyst in decolorization of dyes","authors":"M. Bagherzadeh , M.H. Choopan Dastjerdi , J. Mokhtari , F. Abadian-Naeini , M. Mohsennia","doi":"10.1016/j.clce.2025.100152","DOIUrl":"10.1016/j.clce.2025.100152","url":null,"abstract":"<div><div>Herein, Ag nanoparticles (Ag NPs) on the surface of nano silica (SiO<sub>2</sub>), Ag NPs/SiO<sub>2</sub>, were synthesized in-situ from Ag<sup>+</sup> solution by using gamma radiation within a research reactor via a simple method. To accomplish this, a radiation cell was designed and manufactured close to the reactor's core. The cell was designed to allow gamma radiation to samples without neutron collisions and prevent the samples from becoming radioactive. After ensuring that the suspension samples received at least 25 kGy, the synthesized Ag NPs/SiO<sub>2</sub> nanocomposite was separated, washed, and dried. Samples of Ag NPs/SiO<sub>2</sub> were characterized using XRD, FE-SEM, and EDXA methods to ensure their successful synthesis. The FE-SEM images of nanocomposite showed that the cubic Ag NPs with mostly 100 ± 4 nm particles size, had successfully formed and were well dispersed on the SiO<sub>2</sub> surface. After that, the efficiency of the prepared Ag NPs/SiO<sub>2</sub> nanocomposite in catalyzing the decolorization reduction reaction of methylene blue (MB), Congo red (CR), and methyl orange (MO) dyes in the presence of NaBH<sub>4</sub> was investigated. The results showed that the Ag NPs/SiO<sub>2</sub> nanocomposite catalysts completely decolorized MB and reduced the reaction time to 7 minutes. It also catalyzed the complete destruction of CR and reduced the time to 4 minutes and 20 seconds.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100152"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurhayati Jamalludin , Mohd Riduan Jamalludin , Siti Khadijah Hubadillah , Mohd Hafiz Dzarfan Othman , Mohd Azizi Hakim Jamalludin
{"title":"Oily-wastewater treatment using eco-friendly ceramic membranes derived from sugarcane bagasse waste: Optimization using response surface methodology","authors":"Nurhayati Jamalludin , Mohd Riduan Jamalludin , Siti Khadijah Hubadillah , Mohd Hafiz Dzarfan Othman , Mohd Azizi Hakim Jamalludin","doi":"10.1016/j.clce.2025.100151","DOIUrl":"10.1016/j.clce.2025.100151","url":null,"abstract":"<div><div>Treating oily-wastewater through separation technologies with advanced properties such as environmental-friendly and low cost is a challenging work. Herein, we successfully fabricated superhydrophic-superoleophilic green ceramic hollow fibre membrane prepared from sugarcane bagasse waste and modified through sol-gel method. Later, this study aims to optimize wastewater behaviour (pH, concentration and temperature) for oily-wastewater separation through green ceramic membrane using central composite design (CCD) of response surface methods (RSM). The three effective parameters analyzed were oil pH (3–11), oil concentration (10–10000 ppm), oil temperature (30–100 °C) and its combined effect to obtain high oil flux and excellent oil separation efficiency. Through the investigation it was found that the optimum value of pH, oil concentration and temperature were 10, 10.01 ppm and 69.04 °C. The result of the study has suggested that there are oil temperature has significantly influence the efficiency of the synthesized membrane separation performance. The fitted model was found to agree with the predicted and actual oil flux as well as separation efficiency which indicated by the high values of R<sup>2</sup> = 0.954 and R<sup>2</sup><sub>adj</sub> = 0.986. According to the optimized condition, the finding reported 4.71 % and 0.746 % average error for oil flux and separation efficiency which agrees with the forecasted and actual values. The novelty of this study lies in the development of an eco-friendly ceramic membrane derived from sugarcane bagasse waste, offering an innovative and sustainable solution for oily-wastewater treatment.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenomenological kinetic model for biosorption of cesium (Cs) by poly-γ-glutamic acid sodium salt (γ-PGANa)","authors":"Misaki Hisada, Shigeki Sakamoto, Kenta Sugiyama, Yoshinori Kawase","doi":"10.1016/j.clce.2025.100150","DOIUrl":"10.1016/j.clce.2025.100150","url":null,"abstract":"<div><div>A phenomenological biosorption kinetic model was developed for cesium (Cs) biosorption from radioactive wastewaters by poly-γ-glutamic acid sodium salt (γ-PGANa). The biosorption by non-living biosorbent γ-PGANa is controlled by the ion-exchange mechanism and the proposed kinetic model is based on the ion-exchange mechanism, which is disassembled in two steps, i.e., Step 1 in which Na<sup>+</sup> from the functional group (–COONa) in γ-PGANa is released and Step 2 in which Cs<sup>+</sup> and H<sup>+</sup> are competitively adsorbed on negatively charged functional group −COO<sup>−</sup>. The validation of the proposed phenomenological kinetic model was conducted using the present experimental data for dynamic changes in Cs concentration obtained with the wide ranges of operation conditions at pH from 3 to 9, the dosage of γ-PGANa from 0.1 to 0.6 gL<sup>−1</sup>, the initial Cs concentration from 0.0001 to 0.1 gL<sup>−1</sup>, and temperature from 298 to 318 K. The capability of the proposed kinetic model was proved by reasonable agreement between the model predictions and the experimental results.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Iranpour , Ali Babaei , Mojtaba Bagherzadeh
{"title":"Microwave and heat-assisted extracted Melilotus officinalis as a potential eco-friendly corrosion inhibitor for carbon steel in 0.5 M HCl solution","authors":"Maryam Iranpour , Ali Babaei , Mojtaba Bagherzadeh","doi":"10.1016/j.clce.2025.100149","DOIUrl":"10.1016/j.clce.2025.100149","url":null,"abstract":"<div><div>This study investigates, for the first time, the inhibitory capabilities of Melilotus officinalis extract (MOE), extracted via microwave-assisted (MAE) and heat-assisted extraction (HAE), in preventing corrosion of carbon steel (CS) in a 0.5 M HCl solution. Utilized methodologies include conventional weight loss techniques and electrochemical analyses like Tafel polarization and electrochemical impedance spectroscopy (EIS) for measuring MOE's inhibition efficiency (IE) on CS. The adsorption behaviors of MOE on the CS surface were evaluated through different adsorption isotherm models. Additionally, the study assessed the effect of temperature on the extracted MOE's IE% and polarization actions, providing thermodynamic parameters (Ea, ΔS*, and ΔH*) for CS in the acidic solution, both with and without MOE presence. The maximum IE% achieved was 92.3% when the concentration of MOE extracted via the MAE route reached 800 ppm, following a duration of 30 min, as determined by EIS measurements. Finally, surface protection offered by MOE to CS in the acidic solution was verified using scanning electron microscopy (SEM). The results of the study are reviewed and analyzed comprehensively.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayaraja Silvaraja , Noor Yahida Yahya , Muzakkir Mohammad Zainol , Yong Siang Lee
{"title":"Preliminary investigations of sustainable magnetic catalyst-based biochar derived spent coffee ground for biodiesel production from waste cooking oil","authors":"Jayaraja Silvaraja , Noor Yahida Yahya , Muzakkir Mohammad Zainol , Yong Siang Lee","doi":"10.1016/j.clce.2025.100148","DOIUrl":"10.1016/j.clce.2025.100148","url":null,"abstract":"<div><div>Due to the shortage of energy resources and environmental issues, the study presents a sustainable approach for biodiesel production from waste cooking oil (WCO) catalyzed using magnetic catalyst-based biochar derived spent coffee ground (SCG). The added properties of magnetic and basic towards this catalyst was prepared by facile carbonization of one-pot SCG with Fe(III) and potassium hydroxide as activation agent at 700 °C for 2 h The characteristics of the catalyst was analyzed through Fourier transform spectroscopy (FTIR), scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX), x-ray diffraction and Brunauer–Emmett–Teller (BET) surface area analysis. The performance of the catalyst was explored by the parametric effect on biodiesel yield from WCO. The parameters included are methanol to oil molar ratio, dosage of the catalyst and reaction time. The results showed that the catalyst exhibited excellent catalytic activity, with a biodiesel yield of 92.31% under 6:1 methanol to oil molar ratio, 1 wt% of catalyst dosage and 2 h of reaction time and the magnetism observation shows the catalyst own a magnetic property. In addition, the findings suggest that this approach offers a promising contribution for the development of a circular economy in the biofuel industry based on the utilization of waste to wealth.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}