从废咖啡渣中提取的生物废物衍生活性炭,用于体积储氢

Andrew K. Gillespie , Adam D. Smith , Sean Sweeny , Mark Sweeny , Zeke A. Piskulich , Ernest Knight , Matthew Prosniewski , Samantha M. Gillespie , David Stalla
{"title":"从废咖啡渣中提取的生物废物衍生活性炭,用于体积储氢","authors":"Andrew K. Gillespie ,&nbsp;Adam D. Smith ,&nbsp;Sean Sweeny ,&nbsp;Mark Sweeny ,&nbsp;Zeke A. Piskulich ,&nbsp;Ernest Knight ,&nbsp;Matthew Prosniewski ,&nbsp;Samantha M. Gillespie ,&nbsp;David Stalla","doi":"10.1016/j.clce.2025.100155","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoporous activated carbon materials were prepared from biowaste (spent coffee grounds) as a renewable and practical system for enhanced hydrogen storage at room temperature. Chemical charring and activation with potassium hydroxide (KOH) were performed to expand the pore network, increase the specific surface area, and improve the volumetric storage capacity. These materials were characterized using helium pycnometry, nitrogen adsorption, hydrogen adsorption, and scanning electron microscopy. The activation procedure resulted in a bimodal pore size distribution and a large fraction of nanopores of 7 Å pore widths that are optimal for hydrogen storage. Specific surface areas of 2595 m<sup>2</sup>/g were achieved with a crystalline volumetric storage capacity of 9.84 g/L at room temperature and 100 bar. This corresponds to an energy density around 1.18 MJ/L, which is a 28% improvement over compressed gas alone. This biowaste-derived material has the same volumetric storage capacity as the commercially available, petroleum-derived adsorbent, Maxsorb (MSC-30) produced by Kansai Coke. This demonstrates that reversible, physical adsorption of hydrogen on materials produced from biowaste may be used as a more ecologically friendly improvement for renewable energy storage. A similar performance can be achieved by engineering a range of biowaste-based adsorbent materials that involve cleaner precursors compared to the petroleum-based adsorbent materials currently offered on the market.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100155"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biowaste-derived activated carbon from spent coffee grounds for volumetric hydrogen storage\",\"authors\":\"Andrew K. Gillespie ,&nbsp;Adam D. Smith ,&nbsp;Sean Sweeny ,&nbsp;Mark Sweeny ,&nbsp;Zeke A. Piskulich ,&nbsp;Ernest Knight ,&nbsp;Matthew Prosniewski ,&nbsp;Samantha M. Gillespie ,&nbsp;David Stalla\",\"doi\":\"10.1016/j.clce.2025.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoporous activated carbon materials were prepared from biowaste (spent coffee grounds) as a renewable and practical system for enhanced hydrogen storage at room temperature. Chemical charring and activation with potassium hydroxide (KOH) were performed to expand the pore network, increase the specific surface area, and improve the volumetric storage capacity. These materials were characterized using helium pycnometry, nitrogen adsorption, hydrogen adsorption, and scanning electron microscopy. The activation procedure resulted in a bimodal pore size distribution and a large fraction of nanopores of 7 Å pore widths that are optimal for hydrogen storage. Specific surface areas of 2595 m<sup>2</sup>/g were achieved with a crystalline volumetric storage capacity of 9.84 g/L at room temperature and 100 bar. This corresponds to an energy density around 1.18 MJ/L, which is a 28% improvement over compressed gas alone. This biowaste-derived material has the same volumetric storage capacity as the commercially available, petroleum-derived adsorbent, Maxsorb (MSC-30) produced by Kansai Coke. This demonstrates that reversible, physical adsorption of hydrogen on materials produced from biowaste may be used as a more ecologically friendly improvement for renewable energy storage. A similar performance can be achieved by engineering a range of biowaste-based adsorbent materials that involve cleaner precursors compared to the petroleum-based adsorbent materials currently offered on the market.</div></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782325000105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用生物废弃物(咖啡渣)制备纳米多孔活性炭材料,作为一种可再生的、实用的室温储氢系统。通过化学炭化和氢氧化钾(KOH)活化,扩大了孔隙网络,增加了比表面积,提高了体积存储容量。利用氦比容、氮吸附、氢吸附和扫描电镜对这些材料进行了表征。活化过程导致了双峰孔径分布和大部分孔径为7 Å的纳米孔,这是储氢的最佳孔径。在室温和100 bar条件下,晶体体积存储容量为9.84 g/L,比表面积为2595 m2/g。这相当于能量密度约为1.18 MJ/L,比单独压缩气体提高了28%。这种生物废物衍生材料具有与关西焦炭生产的市售石油衍生吸附剂Maxsorb (MSC-30)相同的体积储存能力。这表明,由生物废物产生的材料对氢的可逆物理吸附可以作为一种更生态友好的可再生能源存储改进。与目前市场上提供的石油基吸附材料相比,通过设计一系列基于生物废物的吸附材料可以实现类似的性能,这些材料含有更清洁的前体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biowaste-derived activated carbon from spent coffee grounds for volumetric hydrogen storage
Nanoporous activated carbon materials were prepared from biowaste (spent coffee grounds) as a renewable and practical system for enhanced hydrogen storage at room temperature. Chemical charring and activation with potassium hydroxide (KOH) were performed to expand the pore network, increase the specific surface area, and improve the volumetric storage capacity. These materials were characterized using helium pycnometry, nitrogen adsorption, hydrogen adsorption, and scanning electron microscopy. The activation procedure resulted in a bimodal pore size distribution and a large fraction of nanopores of 7 Å pore widths that are optimal for hydrogen storage. Specific surface areas of 2595 m2/g were achieved with a crystalline volumetric storage capacity of 9.84 g/L at room temperature and 100 bar. This corresponds to an energy density around 1.18 MJ/L, which is a 28% improvement over compressed gas alone. This biowaste-derived material has the same volumetric storage capacity as the commercially available, petroleum-derived adsorbent, Maxsorb (MSC-30) produced by Kansai Coke. This demonstrates that reversible, physical adsorption of hydrogen on materials produced from biowaste may be used as a more ecologically friendly improvement for renewable energy storage. A similar performance can be achieved by engineering a range of biowaste-based adsorbent materials that involve cleaner precursors compared to the petroleum-based adsorbent materials currently offered on the market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信