Cleaner Chemical Engineering最新文献

筛选
英文 中文
Eulerian computational fluidisation modelling using OpenFOAM applied to a semi-industrial fluidised bed reactor and pilot plant application 欧拉计算流化建模使用OpenFOAM应用于半工业流化床反应器和中试工厂的应用
Cleaner Chemical Engineering Pub Date : 2023-03-01 DOI: 10.1016/j.clce.2022.100089
Vitor A.L. Monteiro , Maurício G.A. Reis , Luciano R. Infiesta , Cassius R.N. Ferreira , Marcelo B. dos Santos , Alam G. Trovó , Solidônio R. Carvalho
{"title":"Eulerian computational fluidisation modelling using OpenFOAM applied to a semi-industrial fluidised bed reactor and pilot plant application","authors":"Vitor A.L. Monteiro ,&nbsp;Maurício G.A. Reis ,&nbsp;Luciano R. Infiesta ,&nbsp;Cassius R.N. Ferreira ,&nbsp;Marcelo B. dos Santos ,&nbsp;Alam G. Trovó ,&nbsp;Solidônio R. Carvalho","doi":"10.1016/j.clce.2022.100089","DOIUrl":"https://doi.org/10.1016/j.clce.2022.100089","url":null,"abstract":"<div><p>Simulations of a fluidised bed reactor for gasification of municipal solid refuse-derived fuel were performed using OpenFOAM software. Firstly, evaluation was made of a simplified gas-solid two-phase model, considering sand and air as the components, according to a transient Eulerian-Eulerian approach. A scale-up study was also performed to obtain thermal-fluid dynamic parameters. Then, a real dimensions non-reacting model was developed, based on the experimental information from a semi-industrial gasification plant with capacity for processing 7.1 t day<sup>−1</sup> of municipal refuse-derived fuel, producing 16.9 t day<sup>−1</sup> of syngas. The fluidising regime was mapped for different inlet conditions, at 1,123 K, with air velocities ranging from 0.01 to 1.25 m s<sup>−1</sup>, and the continuous operation of the reactor was analysed, where in the solid particles packing remained at approximately 88% from maximum, with bed height of 2.05 m. The results were in good agreement with data available in the scientific literature, and the computational model was able to provide consistent results when compared to the experimental information for the semi-industrial reactor. The authors’ major remark was the hability of this computational model in obtaining consistent results from simulations of the semi-industrial scale reactor, with good prediction of the internal fluid dynamics characteristics.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"5 ","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49706532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing a modified Tchar stove and evaluation of its thermal performance 一种改进型恰尔炉的设计及热性能评价
Cleaner Chemical Engineering Pub Date : 2023-03-01 DOI: 10.1016/j.clce.2023.100096
Abdullah Faisal Pasha, Mustafa Asif Ali, Hridoy Roy, Md. Mominur Rahman
{"title":"Designing a modified Tchar stove and evaluation of its thermal performance","authors":"Abdullah Faisal Pasha,&nbsp;Mustafa Asif Ali,&nbsp;Hridoy Roy,&nbsp;Md. Mominur Rahman","doi":"10.1016/j.clce.2023.100096","DOIUrl":"https://doi.org/10.1016/j.clce.2023.100096","url":null,"abstract":"<div><p>In this research, we have developed an energy-efficient modified version of the traditional Tchar stove for household use. The gasifier and charcoal stoves of a traditional Tchar have been incorporated into a single structure by movable fuel bed and pot support for the ease of operation .Traditional Tchar stove utilizes unidirectional preheated secondary air stream, which is unable to reach the flame core efficiently, and results in poor combustion. The modified Tchar stove under this study was designed with the provision of two preheated secondary air streams from opposite direction for crossflow mixing of secondary air and gaseous fuel for improved combustion. The characteristics parameters of the modified Tchar stove were measured following the standard water boiling test (WBT) method to compare with previously reported models. The high power (cold start), and simmering phases were used in WBT for the evaluation of the thermal performance of the modified Tchar stove. The thermal efficiency of the Tchar stove was 39.64±2.29% for the cold start high power phase and 51±3.12% for the low power simmering phase, respectively. In the cold start high power phase, the specific energy consumption values ranged from 1465.99 to 1855.9 kJ/liter. The thermal efficiency of the modified Tchar stove increased with decreasing firepower (kW). The designed stove allows enhanced heat transfer both at low and high fire power with its moveable structure. Moreover, it gives better combustion due to the cross-flow air mixing, which makes it a better alternative compared to the traditional Tchar stove.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"5 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49706980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial neuro-fuzzy intelligent prediction of techno-economic parameters of computer-aided scale-up for palm kernel oil based biodiesel production 棕榈仁油生物柴油计算机辅助放大生产技术经济参数的人工神经模糊智能预测
Cleaner Chemical Engineering Pub Date : 2023-03-01 DOI: 10.1016/j.clce.2023.100098
Olajide Olukayode Ajala , Emmanuel Olusola Oke , Oludare Johnson Odejobi , Babatunde Kazeem Adeoye , Joel Olatunbosun Oyelade
{"title":"Artificial neuro-fuzzy intelligent prediction of techno-economic parameters of computer-aided scale-up for palm kernel oil based biodiesel production","authors":"Olajide Olukayode Ajala ,&nbsp;Emmanuel Olusola Oke ,&nbsp;Oludare Johnson Odejobi ,&nbsp;Babatunde Kazeem Adeoye ,&nbsp;Joel Olatunbosun Oyelade","doi":"10.1016/j.clce.2023.100098","DOIUrl":"https://doi.org/10.1016/j.clce.2023.100098","url":null,"abstract":"<div><p>Palm kernel oil (PKO) is one of the promising starting materials for biodiesel production. Economic viability of large-scale biodiesel production from PKO happens to be the major challenge, as investors would like to know the overall cost-benefit value before making decisions. Therefore, this study develops artificial intelligence (AI) techno-economic models for predicting overall cost-benefit value which will provide fundamental investment decisions for potential investors. The two AI techniques used in this study were artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The input-output data for modelling was gotten from a previous work which based solely on experimental design for PKO for biodiesel production. The input variables are Methanol:oil ratio, temperature, catalyst quantity, residence time and catalyst calcination temperature, while return on investment (ROI), payback time (PBT), net present value (NPV) and production capacity (PC) are the responses. ANN and Fuzzy Logic Toolboxes in MATLAB R2013a were used for model implementation. The developed models were appraised using statistical indices such as coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE). The results showed that, trimf based ANFIS models (ROI- R<sup>2</sup>: 0.9999; RMSE: 7.39 × 10<sup>−7</sup>; PBT- R<sup>2</sup>: 0.9999; RMSE: 5.32 × 10<sup>−7</sup>; NPV- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>; PC- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>) performed marginally better than ANN models (ROI- R<sup>2</sup>: 0.9496; RMSE: 0.0599; PBT- R<sup>2</sup>: 0.9945; RMSE: 0.0373; NPV- R<sup>2</sup>: 0.9957; RMSE: 0.0384; PC- R<sup>2</sup>: 0.9959; RMSE: 0.0376). Also, the relative significance of input parameters based on sensitivity analysis showed catalyst calcination temperature (C<sub>T</sub>) as the most significant input parameter. These findings show that both the ANFIS and ANN models are effective in predicting techno-economic parameters.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"5 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49713010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The potential for hydrogen ironmaking in New Zealand 新西兰氢炼铁的潜力
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100075
Cassidy van Vuuren , Ao Zhang , James T. Hinkley , Chris W. Bumby , Matthew J. Watson
{"title":"The potential for hydrogen ironmaking in New Zealand","authors":"Cassidy van Vuuren ,&nbsp;Ao Zhang ,&nbsp;James T. Hinkley ,&nbsp;Chris W. Bumby ,&nbsp;Matthew J. Watson","doi":"10.1016/j.clce.2022.100075","DOIUrl":"10.1016/j.clce.2022.100075","url":null,"abstract":"<div><p>Globally, iron and steel production is responsible for approximately 6.3% of global man-made carbon dioxide emissions, because coal is used as both the combustion fuel and chemical reductant. Hydrogen reduction of iron ore offers a potential alternative ‘near-zero-CO<sub>2</sub>’ route, if renewable electrical power is used for both hydrogen electrolysis and reactor heating. This paper discusses key technoeconomic considerations for establishing a hydrogen direct reduced iron (H<sub>2</sub>-DRI) plant in New Zealand. The location and availability of firm renewable electricity generation is described, the experimental feasibility of reducing locally-sourced titanomagnetite ironsand in hydrogen is shown, and a high-level process flow diagram for a counter-flow electrically heated H<sub>2</sub>-DRI process is developed. The minimum hydrogen composition of the reactor off-gas is 46%, necessitating the inclusion of a hydrogen recycle loop to maximise chemical utilisation of hydrogen and minimize costs. A total electrical energy requirement of 3.24 MWh per tonne of H<sub>2</sub>-DRI is obtained for the base-case process considered here. Overall, a maximum input electricity cost of no more than US$80 per MWh at the plant is required to be cost-competitive with existing carbothermic DRI processes. Production cost savings could be achieved through realistic future improvements in electrolyser efficiency (∼ US$5 per tonne of H<sub>2</sub>-DRI) and heat exchanger (∼US$3 per tonne). We conclude that commercial H<sub>2</sub>-DRI production in New Zealand is entirely feasible, but will ultimately depend upon the price paid for firm electrical power at the plant.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000730/pdfft?md5=6d2d8cac15a4d9553e69123e9e57e362&pid=1-s2.0-S2772782322000730-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74097758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance evaluation of Bi2Te3-xSex (0.10 ≤ X ≤ 1.80) thermoelectric nanostructured materials Bi2Te3-xSex(0.10≤X≤1.80)热电纳米结构材料的性能评价
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100063
Hayati Mamur , Mehmet Ali Üstüner , Ömer Faruk Dilmaç , Mohammad Ruhul Amin Bhuiyan
{"title":"Performance evaluation of Bi2Te3-xSex (0.10 ≤ X ≤ 1.80) thermoelectric nanostructured materials","authors":"Hayati Mamur ,&nbsp;Mehmet Ali Üstüner ,&nbsp;Ömer Faruk Dilmaç ,&nbsp;Mohammad Ruhul Amin Bhuiyan","doi":"10.1016/j.clce.2022.100063","DOIUrl":"10.1016/j.clce.2022.100063","url":null,"abstract":"<div><p>Traditional materials have a lower commercial impact than thermoelectric (TE) nanostructure materials. These materials have advanced to the point that a thermoelectric generator (TEG) may be built using them. Bi<sub>2</sub>Te<sub>3-x</sub>Se<sub>x</sub> (0.10 ≤ X ≤ 1.80) nanostructure materials would overcome the constraint of Bi<sub>2</sub>Te<sub>3</sub> for TEG manufacturing in advanced TE technology. Bi<sub>2</sub>Te<sub>3-x</sub>Se<sub>x</sub> (0.10 ≤ X ≤ 1.80) nanostructure materials have recently been recognized as promising TE materials from the research arena for successful use in TEG manufacture. It is already at the commercialization stage and has certain advantages over Bi<sub>2</sub>Te<sub>3</sub>. This material's study and development will almost certainly be difficult. The review lays forth a literature strategy for overcoming the constraints of the Bi<sub>2</sub>Te<sub>3</sub> nanostructure material and finding the best composition for TE applications. Furthermore, the performance of existing Bi<sub>2</sub>Te<sub>3-x</sub>Se<sub>x</sub> (0.10 ≤ X ≤ 1.80) nanostructured materials is discussed.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000614/pdfft?md5=41518b4efc55bdaca6438bc764304c21&pid=1-s2.0-S2772782322000614-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74639721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Detection of pyrene degrading bacterial strains (LOP-9 Staphylococcus aureus and GWP-2 Mycobacterium vaanbaalenii) and their metabolic products 芘降解菌株(LOP-9金黄色葡萄球菌和GWP-2万巴氏分枝杆菌)及其代谢产物的检测
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100080
Beema Kumari, Harish Chandra, Ram Chandra
{"title":"Detection of pyrene degrading bacterial strains (LOP-9 Staphylococcus aureus and GWP-2 Mycobacterium vaanbaalenii) and their metabolic products","authors":"Beema Kumari,&nbsp;Harish Chandra,&nbsp;Ram Chandra","doi":"10.1016/j.clce.2022.100080","DOIUrl":"10.1016/j.clce.2022.100080","url":null,"abstract":"<div><p>Pyrenes are polycyclic aromatic hydrocarbons responsible for an array of health hazards and environmental abuses. The remediation of such compounds is remaining as an area of interest for scientist community. The present study aimed for isolation and screening of pyrene degrading bacterial strains optimized at various environmental and nutritional requirement to assess their potential for pyrene degradability. The result have revealed that isolated strain GWP-2 and LOP-9 showed degradation of pyrene 86% and 82.1%, respectively at temperature 37 °C and pH 9 in presence of glucose(1%) and peptone(0.5%) within 15 days of incubated at 140 rpm in temperature controlled shaker. The variation of temperature and pH from optimized condition decrease the performance of isolated strains. The metabolite characterization through GCMS showed strain GWP-2 9,12-octadecadienoic acid, Oxido-4,17-cholestadian-3a,16a-diol, Heptadecane,2,6,10,15-tetramethyl, Heptacosane, 1,2-benzenedicarboxylic acid and Octadecane 3-ethyl-5-(2-ethylbutyl) as major product while LOP-9 showed their major product as Disiloxane,hexamethyl-(CAS), Benzene -1,2,4-triol(trimethylsilyl) ester, Octahydroquinoline-6-carboxylic acid(phenylethyl amide) and 4-methyl1,4‑hydroxy-6-(2,5,6,6′-tetramethylcyclohex-1-en-1-yl)hex-2-ynyl acetate after 15 days degradation. Many compounds detected in control were completely removed. The isolated strains were identified as <em>Mycobacterium vaanbaalenii</em> GWP-2 (ON715011) and <em>Staphylococcus aureus</em> LOP-9(ON715121) based their 16s-rRNA sequencing. These potential strains may be useful for detoxification of pyrene containing pollution in soil and water ecosystem.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277278232200078X/pdfft?md5=91428f15805e6e3b543fe47bfcea1eca&pid=1-s2.0-S277278232200078X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81480735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A comprehensive study of bioremediation for pharmaceutical wastewater treatment 生物修复技术在制药废水处理中的综合研究
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100073
Smer Lakhani , Diya Acharya , Rishi Sakariya , Devansh Sharma , Prachi Patel , Manan Shah , Mitul Prajapati
{"title":"A comprehensive study of bioremediation for pharmaceutical wastewater treatment","authors":"Smer Lakhani ,&nbsp;Diya Acharya ,&nbsp;Rishi Sakariya ,&nbsp;Devansh Sharma ,&nbsp;Prachi Patel ,&nbsp;Manan Shah ,&nbsp;Mitul Prajapati","doi":"10.1016/j.clce.2022.100073","DOIUrl":"10.1016/j.clce.2022.100073","url":null,"abstract":"<div><p>Quality water is used for various daily chores like drainage, drinking, sanitation, agricultural, and other industrial applications, thus being the need of the hour. Water is a dominant raw material in manufacturing pharmaceuticals and chemicals; reliable and superior water sources are needed for many processes, including cooling, refining, and material extraction. The purpose of urban and industrial wastewater treatment is to eliminate contaminants, destroy toxicants, neutralise coarse particles, and destroy bacteria to increase the consistency of the discharged water to maintain the allowable amount of water to be discharged into or for agricultural property. So, the goal of water treatment is to lower BOD, COD, eutrophication, etc., in receiving water sources and stop radioactive compounds from spreading through the food chain. Pharmaceutical wastewater has a wide range of characteristics, including a high amount of organic matter, microbial contamination, a high salt content, and the inability to biodegrade. Following secondary application, residual quantities of suspended solids and dissolved organic matter exist. Therefore, advanced treatment is necessary to increase the efficiency of pharmaceutical wastewater effluent. In the methods described in this study, Advanced Oxidation and Bioremediation—the latter emerges as the most environmentally and commercially viable option. This paper discusses the many types of bioremediations, their applications, and their limits in the treatment of industrial wastewater with the goal of reducing the ecotoxicological impacts of pharmaceutical wastewater.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100073"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000717/pdfft?md5=d16c99843896c798858367b408a3dc49&pid=1-s2.0-S2772782322000717-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80847555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characteristics analysis of supercritical CO2 sub-micron particle deposition in heat exchanger channel 超临界CO2亚微米颗粒在换热器通道内沉积特性分析
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100081
Shang Mao , Tao Zhou , Yao Yao , Jianyu Tang , Xiaofang Liu
{"title":"Characteristics analysis of supercritical CO2 sub-micron particle deposition in heat exchanger channel","authors":"Shang Mao ,&nbsp;Tao Zhou ,&nbsp;Yao Yao ,&nbsp;Jianyu Tang ,&nbsp;Xiaofang Liu","doi":"10.1016/j.clce.2022.100081","DOIUrl":"10.1016/j.clce.2022.100081","url":null,"abstract":"<div><p>Better understanding of the dispersion and deposition of sub-micron particles in supercritical CO<sub>2</sub> (SCO<sub>2</sub>) is crucial for the safe operation of supercritical thermal equipment. In present study, the numerical simulation was carried out to evaluate the deposition features of sub-micron particles in SCO<sub>2</sub>. The anisotropic flow in the gas phase was predicted using the Re-Normalization Group (RNG) <em>k-ε</em> turbulent model and the particle trajectory was tracked using the discrete particle model (DPM). Moreover, the particle deposition under heating and cooling condition were presented. The effects of particle type, wall temperature, inlet flow velocity, temperature and pressure on particle deposition were investigated. The analysis found that the deposition velocity is more applicable to judging the particle deposition than the dimensionless deposition velocity. When SCO<sub>2</sub> is cooled, it promotes particle deposition, and when it is heated, it prevents deposition due to thermophoretic forces. Particles are easily deposited when SCO<sub>2</sub> exceeds the pseudo-critical point in the gaseous-like region. Moreover, stainless steel has greater deposition velocity than graphite due to the large density. The inlet flow velocity has different effects on particle deposition. It promotes the deposition of small particles, medium particles remain stable, and large particles first decrease and then increase. The particle diameter is closely related to the deposition distance. The deposition probability for 1 μm, 10 μm and 50 μm is 63%, 77% and 85% at 0–0.2 m, respectively.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100081"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000791/pdfft?md5=d117bfc309773e9a506a242388e02e6a&pid=1-s2.0-S2772782322000791-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84002567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Influence of rheology in the filtration of leach slurry generated by alkaline pressure leaching of a limestone ore 石灰石碱压浸浸出浆过滤过程中流变学的影响
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100079
Md Serajuddin , Anand Rao K , Sulekha Mukhopadhyay
{"title":"Influence of rheology in the filtration of leach slurry generated by alkaline pressure leaching of a limestone ore","authors":"Md Serajuddin ,&nbsp;Anand Rao K ,&nbsp;Sulekha Mukhopadhyay","doi":"10.1016/j.clce.2022.100079","DOIUrl":"10.1016/j.clce.2022.100079","url":null,"abstract":"<div><p>The Nuclear Power Plant, which uses uranium as a fuel, is considered as a clean source of energy with low carbon footprint and less environmental damage. In processing the uranium ore, the filtration of alkaline leach slurry generated by oxidative pressure leaching is a challenge due to very fine grind size coupled with high total dissolved solutes (TDS). The present study aimed at improving and understanding the filtration of the leach slurry with the help of slurry rheology. The effect of solid concentration, temperature, particle size, and dosages of dewatering aids on the rheological behavior of the slurry and the filtration performance was investigated. The slurry rheology was delineated by the Herschel–Bulkley model, temperature effects were incorporated using the Arrhenius type model, and particle size distribution (PSD) was represented by the Rosin–Rammler PSD model. The dosages of dewatering aids were compared using rheological parameters. It was found that the filtration rate decreases as solid concentration increases (10 to 75%, w/w) due to an increase in the shear stress (9.93 to 757 Pa at 1400 s<sup>−1</sup>). The leach slurry showed shear thickening at ≤ 60% solids (w/w) and shear thinning at ≥ 70% solids. The maximum solid packing volume fraction was found to be 0.59 and 0.54 at 1300 and 441 s<sup>−1</sup>, respectively. Increase in filtration rate was observed at elevated temperatures as the apparent viscosity (at 1300 s<sup>−1</sup>) decreased from 0.0195 Pa.s at 20 °C to 0.0135 Pa.s at 70 °C. The fluid flow activation energy was determined to be 5.5 and 7.1 kJ/mol at 1110 s<sup>−1</sup> for 50 and 73% solid concentration (w/w), respectively. When the particle size (d<sub>90</sub>) was changed from 66 to 42 µm, a decrease in filtration rate was observed due to an increase in apparent viscosity from 0.0120 to 0.0163 Pa.s at 1400 s<sup>−1</sup>. The high molecular weight polyacrylamide based non-ionic synthetic flocculant N 100 and non-ionic biodegradable polysaccharide surfactant guar gum formed flocs through the bridging mechanism and gave best flocculation results, and therefore selected. The present work helps the researchers in better understanding and improving the filtration process of ore slurries.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100079"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000778/pdfft?md5=a272050da6830b8ed39a4939bdfe9ca1&pid=1-s2.0-S2772782322000778-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83894597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermogravimetric analysis of camel dung, date stone, and their blend for pyrolytic, kinetic, and thermodynamic studies 骆驼粪、枣核及其混合物的热热解、动力学和热力学研究的热重分析
Cleaner Chemical Engineering Pub Date : 2022-12-01 DOI: 10.1016/j.clce.2022.100072
Prakash Parthasarathy , Anabel Fernandez , Deepak Kumar Singh , Tareq Al-Ansari , Hamish R. Mackey , Rosa Rodriguez , Germán Mazza , Jeewan Vachan Tirkey , Gordon McKay
{"title":"Thermogravimetric analysis of camel dung, date stone, and their blend for pyrolytic, kinetic, and thermodynamic studies","authors":"Prakash Parthasarathy ,&nbsp;Anabel Fernandez ,&nbsp;Deepak Kumar Singh ,&nbsp;Tareq Al-Ansari ,&nbsp;Hamish R. Mackey ,&nbsp;Rosa Rodriguez ,&nbsp;Germán Mazza ,&nbsp;Jeewan Vachan Tirkey ,&nbsp;Gordon McKay","doi":"10.1016/j.clce.2022.100072","DOIUrl":"10.1016/j.clce.2022.100072","url":null,"abstract":"<div><p>Camel dung (CM) and date stone (DS) are biomass resources that are abundant across the Gulf region and have the potential to produce sustainable renewable fuels and specialty products. Copyrolysis of CM with DS is an intriguing research approach to boosting both the production and quality of pyrolysis products, particularly biochar. The current study investigated the bio-energy potential of CM, DS, and CD-DS blend by assessing their physicochemical attributes, pyrolysis characteristics, and kinetic behaviour using thermodynamic analysis. To investigate the pyrolysis behaviour, the materials were thermally decomposed using a thermogravimetric analyser under non-isothermal conditions at different heating rates in a nitrogen environment. The findings of the physicochemical analysis established the bio-energy potential of the feedstocks for long-term energy generation. Thermal degradation profiles of the samples revealed multistage degradation due to the various components in their structure. While a positive synergistic effect between DS and CD was observed in the thermal profile of the blend. The average apparent activation energy of CD from the Friedman method, Flynn–Wall–Ozawa (FWO) model, Kissinger–Akahira–Sunose (KAS) method, and Starink model was 324, 167, 157, and 158 kJ/mol, respectively. Friedman, FWO, KAS, and Starink methods yielded average activation energies of 621, 315, 276, and 279 kJ/mol for DS, respectively. The mean activation energy of the blend estimated using the Friedman, FWO, KAS, and Starink methods was 210, 216, 206, and 207 kJ/mol, respectively. The thermodynamic outcomes reveal that slow pyrolysis of the specified feedstocks is a nonspontaneous process requiring external energy for their degradation. The findings of this study may aid in a better understanding of reaction processes and the expansion of pyrolysis applications of DS, CD, and their mix.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100072"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000705/pdfft?md5=645b9188e4e11e34485d6f94a5278ac6&pid=1-s2.0-S2772782322000705-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91172189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信