Sustainable valorization of textile industry cotton waste through pyrolysis for biochar production

Fatema Tujjohra , Md. Ehsanul Haque , Md. Abdul Kader , Mohammed Mizanur Rahman
{"title":"Sustainable valorization of textile industry cotton waste through pyrolysis for biochar production","authors":"Fatema Tujjohra ,&nbsp;Md. Ehsanul Haque ,&nbsp;Md. Abdul Kader ,&nbsp;Mohammed Mizanur Rahman","doi":"10.1016/j.clce.2025.100161","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel and sustainable approach to the valorization of textile spinning industry waste cotton (WC) through direct pyrolysis, converting it into high-quality biochar with enhanced energy potential and structural stability. This research systematically examines the impact of pyrolysis temperature (300–500°C) on biochar yield, composition, and physicochemical properties to optimize conditions for maximum carbon retention and energy efficiency. The results indicate that biochar yield decreased from Biochar yield decreased from 50.5 % at 300°C to 26.7 % at 500°C, while fixed carbon content increased from 59.33 % to 68.65 %. Elemental analysis revealed a rise in carbon content (53.13 % to 73.62 %) and reductions in oxygen (46.7 % to 13.27 %) and hydrogen (6.06 % to 2.79 %), enhancing thermal stability. X-ray Diffraction (XRD) analysis demonstrated a transition from amorphous cellulose to condensed graphitic carbon at higher temperatures. Thermogravimetric Analysis (TGA) confirmed superior thermal resistance, with biochar retaining 14.7 % of its mass at 800°C. Differential Scanning Calorimetry (DSC) revealed key thermal transitions, with the endothermic peak shifting from 65.5°C in raw WC to 79.6°C at 500°C, indicating increased thermal stability. The calorific value peaked at 27.31 MJ/kg at 400°C, making it a promising solid biofuel. Additionally, Brunauer-Emmett-Teller (BET) analysis showed a substantial increase in porosity, with the highest specific surface area of 225.24 m<sup>2</sup>/g at 500°C, improving biochar's potential for adsorption, catalysis, and energy storage. These findings contribute to optimizing pyrolysis conditions for waste cotton valorization, supporting circular economy principles, reducing environmental pollution, and enhancing renewable energy applications. By integrating pyrolysis into textile waste management, this study offers a scalable and eco-friendly strategy for sustainable energy recovery and environmental remediation.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel and sustainable approach to the valorization of textile spinning industry waste cotton (WC) through direct pyrolysis, converting it into high-quality biochar with enhanced energy potential and structural stability. This research systematically examines the impact of pyrolysis temperature (300–500°C) on biochar yield, composition, and physicochemical properties to optimize conditions for maximum carbon retention and energy efficiency. The results indicate that biochar yield decreased from Biochar yield decreased from 50.5 % at 300°C to 26.7 % at 500°C, while fixed carbon content increased from 59.33 % to 68.65 %. Elemental analysis revealed a rise in carbon content (53.13 % to 73.62 %) and reductions in oxygen (46.7 % to 13.27 %) and hydrogen (6.06 % to 2.79 %), enhancing thermal stability. X-ray Diffraction (XRD) analysis demonstrated a transition from amorphous cellulose to condensed graphitic carbon at higher temperatures. Thermogravimetric Analysis (TGA) confirmed superior thermal resistance, with biochar retaining 14.7 % of its mass at 800°C. Differential Scanning Calorimetry (DSC) revealed key thermal transitions, with the endothermic peak shifting from 65.5°C in raw WC to 79.6°C at 500°C, indicating increased thermal stability. The calorific value peaked at 27.31 MJ/kg at 400°C, making it a promising solid biofuel. Additionally, Brunauer-Emmett-Teller (BET) analysis showed a substantial increase in porosity, with the highest specific surface area of 225.24 m2/g at 500°C, improving biochar's potential for adsorption, catalysis, and energy storage. These findings contribute to optimizing pyrolysis conditions for waste cotton valorization, supporting circular economy principles, reducing environmental pollution, and enhancing renewable energy applications. By integrating pyrolysis into textile waste management, this study offers a scalable and eco-friendly strategy for sustainable energy recovery and environmental remediation.
通过热解生产生物炭实现纺织业棉花废料的可持续增值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信