Cleaner Chemical Engineering最新文献

筛选
英文 中文
Sustainable production of electrolytic manganese dioxide (EMD): A conceptual flowsheet
Cleaner Chemical Engineering Pub Date : 2024-12-27 DOI: 10.1016/j.clce.2024.100145
Mbuyu Ntunka , Brian Loveday
{"title":"Sustainable production of electrolytic manganese dioxide (EMD): A conceptual flowsheet","authors":"Mbuyu Ntunka ,&nbsp;Brian Loveday","doi":"10.1016/j.clce.2024.100145","DOIUrl":"10.1016/j.clce.2024.100145","url":null,"abstract":"<div><div>The demand for manganese dioxide is growing fast. A low-cost, green hydrometallurgical process is needed to make it from high- and low-grade manganese ores and secondary manganese resources. The use of high-grade manganese ores (&lt;40%) for conventional pyrometallurgical processes or pyro-pretreatment (roasting) is becoming increasingly unsustainable because of the high carbon footprint and operational costs. Various hydrometallurgical processes have been studied and developed in recent years to recover manganese from other manganese sources (Zhang and Cheng, 2007). This paper proposes a new, energy-efficient method to produce electrolytic manganese dioxide. It eliminates the calcination step and dramatically cuts the use of scrap iron for purification. The proposed process leverages an innovative electrolytic cell design that regenerates iron (II) ions instead of generating hydrogen on the cathodes, enabling their reuse in the leaching stage. Hence, reducing the operating voltage for the electrolysis reduces power consumption. The process allows for the reduction of capital and operating costs, the optimization of resource use, and the reduction of environmental impact.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the relationship between acid precipitation and lignin odor in Kraft Black liquor
Cleaner Chemical Engineering Pub Date : 2024-12-25 DOI: 10.1016/j.clce.2024.100143
Enrique Amieva , Lucia Pola , Sergio Collado , Paula Oulego , Pedro Á. Calvo , Mario Díaz
{"title":"Understanding the relationship between acid precipitation and lignin odor in Kraft Black liquor","authors":"Enrique Amieva ,&nbsp;Lucia Pola ,&nbsp;Sergio Collado ,&nbsp;Paula Oulego ,&nbsp;Pedro Á. Calvo ,&nbsp;Mario Díaz","doi":"10.1016/j.clce.2024.100143","DOIUrl":"10.1016/j.clce.2024.100143","url":null,"abstract":"<div><div>Kraft black liquor, utilized as a lignin feedstock, is increasingly acknowledged as a valuable resource for the production of high-value products. Acid precipitation has proved to be one prominent method for separating this lignin, but its impact on lignin odor remains understudied. This study addresses this gap, aiming to elucidate the relationship between precipitation acidity and lignin odor profiles, offering insights for improving lignin quality and its industrial applications. To this purpose, lignin from Kraft black liquor was precipitated under different acidity levels compared one to another in terms of release of odorous compounds, as mass concentrations and olfactory perception.</div><div>To establish a comprehensive odor profile representative of lignin, the investigation focuses on the odor activity values (OAVs) of compounds contributing significantly to the overall odor mixture. Results revealed that acidity significantly influences the generation of volatile organic compounds and the olfactory profile of lignin. Lignins extracted under acidic conditions exhibit fewer aromatic characteristics, whereas those under neutral conditions display more intense and diverse odors. The presence of the guaiacol aroma, characteristic of lignin, is notably pungent and predominant in all samples.</div><div>Odor profile analysis provides insights into lignin structural changes during precipitation. Decomposition reduces molecular weight, removing salts and sulfur impurities, decreasing sulfur-derived VOCs. Changes in odor profile, like increased acetic acid odor and more methoxyphenol emission, reflect ester bond degradation and greater methoxy group exposure.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of waste aerobic granular sludge: Exploring the recovery of tyrosine, phenylalanine, and other high-value products
Cleaner Chemical Engineering Pub Date : 2024-12-19 DOI: 10.1016/j.clce.2024.100144
Mehdi Mohammadpour , Sandra Ukaigwe , Musa Manga , Oliver Terna Iorhemen
{"title":"Valorization of waste aerobic granular sludge: Exploring the recovery of tyrosine, phenylalanine, and other high-value products","authors":"Mehdi Mohammadpour ,&nbsp;Sandra Ukaigwe ,&nbsp;Musa Manga ,&nbsp;Oliver Terna Iorhemen","doi":"10.1016/j.clce.2024.100144","DOIUrl":"10.1016/j.clce.2024.100144","url":null,"abstract":"<div><div>The aerobic granular sludge (AGS) biotechnology has emerged as a compact, sustainable, resilient, and highly efficient technology for wastewater treatment. Beyond wastewater treatment, AGS provides significant potential for resource recovery, aligning with circular economy principles. This review explores the recovery of six key resources from AGS systems: phosphorus, alginate-like exopolysaccharides (ALE), tryptophan, tyrosine, phenylalanine, and biogas. Phosphorus recovery pathways include enhanced biological phosphorus removal, biologically induced precipitation as hydroxylapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH)), and struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) formation. ALE extraction techniques and optimization strategies are examined for their industrial applications. Biogas production from waste granules can be improved through co-digestion and pre-treatment methods such as steam explosion. Tryptophan production in the aerobic granule matrix can be enhanced through optimized operational parameters, while extraction and quantification are achieved using high-performance liquid chromatography. Tyrosine and phenylalanine, recently identified in the aerobic granule matrix, have a wide range of industrial applications including feed and food supplement, production of medicines, in agriculture for postharvest preservation, and as a raw material for other chemical products. Their biosynthesis in the aerobic granule matrix can be enhanced via process optimization and approaches such as quorum sensing. Addressing current AGS challenges such as extended start-up times when using low-strength wastewater and operational issues with industrial wastewater is critical for maximizing AGS performance. AGS exemplifies innovative biotechnology for sustainable wastewater treatment and resource recovery, leading the way to attaining a circular economy in wastewater management.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends for clean fuel using environmental protecting oxidative desulfurization process
Cleaner Chemical Engineering Pub Date : 2024-12-19 DOI: 10.1016/j.clce.2024.100140
S. Said, S. Mikhail, M. Riad
{"title":"Recent trends for clean fuel using environmental protecting oxidative desulfurization process","authors":"S. Said,&nbsp;S. Mikhail,&nbsp;M. Riad","doi":"10.1016/j.clce.2024.100140","DOIUrl":"10.1016/j.clce.2024.100140","url":null,"abstract":"<div><div>The tremendous consumption of fuel oil causes the environmental pollution and it is necessary to curtail toxic sulfur compounds. The environmental remediation acquires clean desulfurization technology; oxidative desulfurization (ODS) process is intensively studied to produce sulfur clean fuels due to its mild reaction conditions, no hydrogen need and its notable desulfurization performances. This work emphasizes a comprehensive review on the recent finding in catalytic ODS including recently developed materials as metal organic framework/metal oxide composite, polyoxometalate, titanium and molybdenum oxides. The essential link between the catalyst properties and performances in ODS are discussed. The utilization of other ODS assisted processes like extractive, photo-catalytic, adsorptive, ultrasonic and mixing are also reviewed. The insights presented will aid in the development of more accurate and efficient methods for clean fuel production, thereby helping to protect human health and the environment. The review provides guidance from a methodology perspective like mixing assisted desulfurization process for future research and development. Finally, the required future works to mature this technology are suggested providing feasible outlook in efficient oxidative desulfurization technologies for clean fuel production from real fuel.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy, economic, and environmental analysis of a waste-to-energy-to-zero system
Cleaner Chemical Engineering Pub Date : 2024-12-18 DOI: 10.1016/j.clce.2024.100142
Sakkarat Khwamman , Nattaporn Chaiyat
{"title":"Energy, economic, and environmental analysis of a waste-to-energy-to-zero system","authors":"Sakkarat Khwamman ,&nbsp;Nattaporn Chaiyat","doi":"10.1016/j.clce.2024.100142","DOIUrl":"10.1016/j.clce.2024.100142","url":null,"abstract":"<div><div>This study presents a new waste-to-energy-to-zero management under the energy, economic, and environmental implications. The survey data implies a total municipal solid waste (MSW) generation of 17.85 Ton/d. The proportions of combustible waste, noncombustible waste, and organic waste are 31.63%, 35.24%, and 33.13%, respectively. Combustion heat is utilized to fuel a combined cooling, heating, and power (CCHP) system. A power output is generated with a two-stage organic Rankine cycle (ORC) of 55.57 kW<sub>e</sub>, a cooling process in an absorption chiller of 91.06 kW, and a heating process in a drying room of 207.39 kW. A total energy output of 306.98 kW and an energy efficiency of 22.38% are simulated in the waste CCHP system. The solar photovoltaic (PV) rooftop system produced 2,755.62 kWh/d of power generation at a maximum efficiency of 16.28%. A waste-to-energy system has a net power output of 2,823.86 kWh/d at an overall efficiency of 18.34%. Concrete, copper, steel, and gypsum materials significantly influence all midpoint impact categories in the LCA. The main LCA is 6.01E-02 kg CO<sub>2</sub> eq/kWh for climate change, 5.04E-02 kg 1,4-DB eq/kWh for human toxicity, and 1.74E-02 kg Fe eq/kWh for mineral resource depletion. A levelized energy cost (LEnC) of 0.15 USD/kWh, a net present value (NPV) of 1,634,658.51 USD, a profitability index (PI) of 1.72, an internal rate of return (IRR) of 7.97%, and a payback period (PB) of 9.63 y are achieved for economic impact. A waste-to-zero method presents a waste ash concrete block of 7.50 kg, with a size of 39 cm × 19 cm × 7 cm, developed under the Thai Industrial Standard (TIS) 58–2533.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene combined with β-cyclodextrin stabilized cottonseed oil Pickering emulsions for the preparation of nano-cutting fluids
Cleaner Chemical Engineering Pub Date : 2024-12-18 DOI: 10.1016/j.clce.2024.100133
Wei Wang , Mingan Zhou , Haijiang Xie , Bin Dai , Hualin Lin , Sheng Han
{"title":"MXene combined with β-cyclodextrin stabilized cottonseed oil Pickering emulsions for the preparation of nano-cutting fluids","authors":"Wei Wang ,&nbsp;Mingan Zhou ,&nbsp;Haijiang Xie ,&nbsp;Bin Dai ,&nbsp;Hualin Lin ,&nbsp;Sheng Han","doi":"10.1016/j.clce.2024.100133","DOIUrl":"10.1016/j.clce.2024.100133","url":null,"abstract":"<div><div>Cutting fluids have long occupied an essential position in industrial manufacturing, but traditional mineral oil-based cutting fluids have limited their application in advanced manufacturing due to hazardous health, non-degradability, and poor thermal conductivity and cleaning ability. To this end, MXene (Ti<sub>3</sub>C<sub>2</sub>) was combined with oil-in-water (O/W) Pickering emulsion prepared from β-cyclodextrin-stabilized cottonseed oil to develop a new, highly efficient, environmentally friendly nano-cutting fluid. Among them, β-cyclodextrin, a cyclic oligosaccharide, can be employed as Pickering particles to improve the antioxidant and emulsion stability of cottonseed oil; MXene, an emerging class of 2D nanomaterials possessing excellent lubricating properties, mechanical properties, and thermal stability, is an ideal material for the preparation of high-performance nano-cutting fluids. Optimized by the response surface design, the prepared Pickering emulsion with MXene (0.1wt.%) remained stable for about a month without delamination and improved the thermal conductivity by 136.4 % compared to cottonseed oil. Meanwhile, the coefficient of friction (COF), wear spot diameter (WSD), and tapping torque of Pickering emulsion with MXene were reduced by 35.64 %, 10.90 %, and 17.13 %, respectively, compared with cottonseed oil, and also outperformed commercial cutting fluids. The reduction is attributed to the fact that the oxygen functional groups on the surface of MXene can form hydrogen bonds, which are adsorbed on the friction side to form a strong and dense lubricant film.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical treatment of wastewater containing reactive Blue 4 (RB 4) dye: RSM and ANN optimization, technoeconomic analysis and sludge characterization
Cleaner Chemical Engineering Pub Date : 2024-12-16 DOI: 10.1016/j.clce.2024.100138
Kajal Gautam , Yatindra Kumar , Shriram Sonawane , Sushil Kumar
{"title":"Electrochemical treatment of wastewater containing reactive Blue 4 (RB 4) dye: RSM and ANN optimization, technoeconomic analysis and sludge characterization","authors":"Kajal Gautam ,&nbsp;Yatindra Kumar ,&nbsp;Shriram Sonawane ,&nbsp;Sushil Kumar","doi":"10.1016/j.clce.2024.100138","DOIUrl":"10.1016/j.clce.2024.100138","url":null,"abstract":"<div><div>In the present study, electrochemistry based electro-coagulation (EC) process, known as green process is used for the decolorization of Reactive Blue 4 (RB4) from simulated textile wastewater. A multivariate approach, response surface methodology (RSM) and central composite design (CCD) is employed to model and optimize the EC process with five input variables (pH, initial concentration of dye, current density, operating time, and electrodes gap) to treat the wastewater containing RB 4 dye. The efficiency of EC process is calculated in terms of % decolorization and % chemical oxygen demand (COD) removal. A back-propagation Artificial Neural Network (BP - ANN) is also engaged to predict the % color and % COD removal. The experimental values of % decolorization (89.3 %) and % COD removal (84.3 %) are found very close to predicted % decolorizations (88.6 % and 89.4 %) and % COD removal (83.4 % and 84.4 %) at optimized conditions [pH (<em>X<sub>1</sub></em>) = 7.0; initial dye concentration (<em>X<sub>2</sub></em>) = 1297.6 mg <span>l</span><sup>-1</sup>; current density (<em>X<sub>3</sub></em>) = 13.42 mA cm<sup>-2</sup>; contact time (<em>X<sub>4</sub></em>) = 70 min and initial electrodes gap (<em>X<sub>5</sub></em>) = 1.0 cm] using RSM and ANN, respectively. Techno-economic efficacy is determined in terms of an operating cost as ₹114.82 m<sup>-3</sup>. The physico-chemical properties of the EC process generated sludge are analyzed using FTIR and FESEM/EDX. The comparative analysis with previous studies and future perspectives of the EC process for the removal of RB 4 from wastewater is also carried out.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in sustainable turquoise hydrogen production via methane pyrolysis in molten metals
Cleaner Chemical Engineering Pub Date : 2024-12-13 DOI: 10.1016/j.clce.2024.100139
Dr. Alberto Boretti
{"title":"Advances in sustainable turquoise hydrogen production via methane pyrolysis in molten metals","authors":"Dr. Alberto Boretti","doi":"10.1016/j.clce.2024.100139","DOIUrl":"10.1016/j.clce.2024.100139","url":null,"abstract":"<div><div>This narrative review explores recent advancements in turquoise hydrogen production via methane pyrolysis in molten metals, a promising approach for low-carbon hydrogen generation that addresses the environmental challenges of traditional steam methane reforming (SMR). This technology uses molten metals to decompose methane into hydrogen and solid carbon, offering a pathway with a favorable life cycle assessment (LCA) compared to SMR. By integrating renewable energy sources, utilizing biomethane, and managing solid carbon byproducts, molten metals methane pyrolysis has the potential to meet stringent environmental goals. However, the technology remains in an early stage, with considerable challenges related to scalability, material durability at high temperatures, and efficient heat management. Industrial viability depends on advancements in reactor design, corrosion-resistant materials, and monitoring systems. While molten metal methane pyrolysis shows environmental promise, it is too early to determine its suitability as the preferred technology for large-scale turquoise hydrogen production. Ongoing research in reactor optimization, carbon byproduct handling, and renewable integration will be critical to fully realizing the potential of this technology, especially for deployment in natural gas-rich regions.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents
Cleaner Chemical Engineering Pub Date : 2024-12-09 DOI: 10.1016/j.clce.2024.100137
Nomthandazo Precious Sibiya , Thembisile Patience Mahlangu , Emmanuel Kweinor Tetteh , Sudesh Rathilal
{"title":"Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents","authors":"Nomthandazo Precious Sibiya ,&nbsp;Thembisile Patience Mahlangu ,&nbsp;Emmanuel Kweinor Tetteh ,&nbsp;Sudesh Rathilal","doi":"10.1016/j.clce.2024.100137","DOIUrl":"10.1016/j.clce.2024.100137","url":null,"abstract":"<div><div>Industrial effluent comprises several highly toxic substances that have polluted water and harmed natural resources. The existence of heavy metals in wastewater, on the other hand, limits the biodegradability of major organic pollutants, transforming them into long-term ecosystem components. Membrane separation, advanced oxidation, and adsorption have all been used to treat wastewater, but adsorption has proven to be preferable due to its low technical skill demand and relatively high pollutant removal efficiency while employing a low adsorbent dose. As a result, one of the approaches that has yielded promising results and sparked widespread attention is the synthesis of novel adsorbents. Recently, there has been a lot of interest in immobilizing microbial cells on biosorbents to reduce contaminants. Compared to other biological treatment technologies, biosorbent immobilized microorganisms can increase microbial abundance, repeated utilization ratio, microbial metabolic capability, and so on. However, the study on this approach is still in its early stages. The interaction between biosorbent and microbes has received little attention, with many research projects limited to laboratory settings. Further explanation is needed to address issues such as challenging recovery and secondary contamination from remaining contaminants following biosorbent adsorption. This article provides a detailed overview of biosorbent-based wastewater treatment technologies. It investigated the mechanics of immobilized microorganisms and assessed their applicability in wastewater treatment using biosorbents.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized MgONanoparticle integrated with PVDF-PEG fibre enhances strength and contaminant separation efficacy
Cleaner Chemical Engineering Pub Date : 2024-12-01 DOI: 10.1016/j.clce.2024.100135
Mohammed Abdulsalam , Mohammed Umar Abba , Ibrahim Babangida Dalha , Badruddeen Saulawa Sani , Katibi Kayode Kamil , Kiman Silas , Ibrahim Garba Shitu , Bello Suleiman
{"title":"Functionalized MgONanoparticle integrated with PVDF-PEG fibre enhances strength and contaminant separation efficacy","authors":"Mohammed Abdulsalam ,&nbsp;Mohammed Umar Abba ,&nbsp;Ibrahim Babangida Dalha ,&nbsp;Badruddeen Saulawa Sani ,&nbsp;Katibi Kayode Kamil ,&nbsp;Kiman Silas ,&nbsp;Ibrahim Garba Shitu ,&nbsp;Bello Suleiman","doi":"10.1016/j.clce.2024.100135","DOIUrl":"10.1016/j.clce.2024.100135","url":null,"abstract":"<div><div>The constituent recalcitrant color pigments and other organic pollutants (such as COD, and MLSS) in palm oil mill effluent (POME) are detrimental, yet the commonly employed conventional remediation method has been inefficient. This study focused on the development of an innovative hybrid membrane designed for efficient decolorization and separation of pollutants. The research involves the incorporation of magnesium oxide (MgO) nanoparticles at a varied loading (0.0–0.75 wt%) into polyvinylidene fluoride (PVDF) and polyethylene-glycol (PEG) hollow-fiber using blending dry-jet wet-swirling phase inversion technique. Initially, the crystallinity and purity of the MgO were examined using X-ray diffraction before the application. Then, morphological characteristics, elemental constituents, mechanical strength, and thermal stability of the resultant membranes were examined using Scanning Electron Microscopy, Energy Diffraction X-ray, tensile loading, and thermogravimetric analysis. The performance results indicated that the membrane sample with the nanoparticles MgO-0.50wt% demonstrated superior mechanical and thermal stability, as well as separation performance. The membrane was able to remove the colorants, COD, suspended solids, total nitrogen, and turbidity by 80.05, 94.10, 98.67, 87.02, and 96.01 %, respectively. Additionally, the sample has the highest flux recovery ratio of 0.929 (or 92.9 %) with a minimal irreversible fouling ratio of 0.071 (or 7.1 %). The regeneration and reusability analysis indicates that at the end of the 4th filtration cycle, the modified membrane (0.50 wt% MgO) exhibited only a 23.22 % reduction in permeability flux. This finding suggests that the nanoparticles MgO 0.50wt% PVDF/PEG sample is a promising technology for POME treatment.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信