Deciphering methanolysis of Calophyllum inophyllum oil into biodiesel using KOH-doped Aegle marmelos biochar catalyst: Thermo-kinetics, optimization and cost analysis

Bisheswar Karmakar , Gopinath Halder
{"title":"Deciphering methanolysis of Calophyllum inophyllum oil into biodiesel using KOH-doped Aegle marmelos biochar catalyst: Thermo-kinetics, optimization and cost analysis","authors":"Bisheswar Karmakar ,&nbsp;Gopinath Halder","doi":"10.1016/j.clce.2025.100153","DOIUrl":null,"url":null,"abstract":"<div><div>The current study presents the catalysed conversion of <em>Calophyllum inophyllum</em> oil with methanol into biodiesel using a single stage approach. Here, the catalyst development essentially valorises waste <em>Aegle marmelos</em> fruit shell through carbonization and subsequent doping with KOH. An indigenously developed heterogeneous catalyst was obtained that can be easily recovered and reused multiple times, proving to be cost efficient according to calculated estimates. This also reduces fuel synthesis costs owing to drastic reduction in wastewater generation. The reaction is optimized through central composite design (CCD) using five process parameters viz. reaction temperature, duration, catalyst concentration, methanol concentration and agitation speed, which resulted in maximum fuel yield of 95.77 %. Conversion of oil was optimal using methanol at 40 %w/w concentration at 60 °C reaction temperature, when the reaction occurs for a duration of 150 min with KOH-doped catalyst at 4 %w/w concentration, requiring a high agitation speed of 850 rpm. From analysis of variance (ANOVA) studies it is clear that the developed model is consistent and statistically relevant. From kinetic and thermodynamic studies, it is seen that the base catalysed transesterification has an activation energy (<em>E<sub>a</sub></em>) = 98.895 kJ/mol and frequency factor (<em>A</em>) = 90.74 min<sup>-1</sup>, as the reaction is endothermic since enthalpy change (ΔH) was noted to be 809.64 J, along with an entropy change (ΔS) of -64.59 J/K-mol, showing it to be non-spontaneous as well as increasing order in the system.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study presents the catalysed conversion of Calophyllum inophyllum oil with methanol into biodiesel using a single stage approach. Here, the catalyst development essentially valorises waste Aegle marmelos fruit shell through carbonization and subsequent doping with KOH. An indigenously developed heterogeneous catalyst was obtained that can be easily recovered and reused multiple times, proving to be cost efficient according to calculated estimates. This also reduces fuel synthesis costs owing to drastic reduction in wastewater generation. The reaction is optimized through central composite design (CCD) using five process parameters viz. reaction temperature, duration, catalyst concentration, methanol concentration and agitation speed, which resulted in maximum fuel yield of 95.77 %. Conversion of oil was optimal using methanol at 40 %w/w concentration at 60 °C reaction temperature, when the reaction occurs for a duration of 150 min with KOH-doped catalyst at 4 %w/w concentration, requiring a high agitation speed of 850 rpm. From analysis of variance (ANOVA) studies it is clear that the developed model is consistent and statistically relevant. From kinetic and thermodynamic studies, it is seen that the base catalysed transesterification has an activation energy (Ea) = 98.895 kJ/mol and frequency factor (A) = 90.74 min-1, as the reaction is endothermic since enthalpy change (ΔH) was noted to be 809.64 J, along with an entropy change (ΔS) of -64.59 J/K-mol, showing it to be non-spontaneous as well as increasing order in the system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信