Deciphering methanolysis of Calophyllum inophyllum oil into biodiesel using KOH-doped Aegle marmelos biochar catalyst: Thermo-kinetics, optimization and cost analysis

Bisheswar Karmakar , Gopinath Halder
{"title":"Deciphering methanolysis of Calophyllum inophyllum oil into biodiesel using KOH-doped Aegle marmelos biochar catalyst: Thermo-kinetics, optimization and cost analysis","authors":"Bisheswar Karmakar ,&nbsp;Gopinath Halder","doi":"10.1016/j.clce.2025.100153","DOIUrl":null,"url":null,"abstract":"<div><div>The current study presents the catalysed conversion of <em>Calophyllum inophyllum</em> oil with methanol into biodiesel using a single stage approach. Here, the catalyst development essentially valorises waste <em>Aegle marmelos</em> fruit shell through carbonization and subsequent doping with KOH. An indigenously developed heterogeneous catalyst was obtained that can be easily recovered and reused multiple times, proving to be cost efficient according to calculated estimates. This also reduces fuel synthesis costs owing to drastic reduction in wastewater generation. The reaction is optimized through central composite design (CCD) using five process parameters viz. reaction temperature, duration, catalyst concentration, methanol concentration and agitation speed, which resulted in maximum fuel yield of 95.77 %. Conversion of oil was optimal using methanol at 40 %w/w concentration at 60 °C reaction temperature, when the reaction occurs for a duration of 150 min with KOH-doped catalyst at 4 %w/w concentration, requiring a high agitation speed of 850 rpm. From analysis of variance (ANOVA) studies it is clear that the developed model is consistent and statistically relevant. From kinetic and thermodynamic studies, it is seen that the base catalysed transesterification has an activation energy (<em>E<sub>a</sub></em>) = 98.895 kJ/mol and frequency factor (<em>A</em>) = 90.74 min<sup>-1</sup>, as the reaction is endothermic since enthalpy change (ΔH) was noted to be 809.64 J, along with an entropy change (ΔS) of -64.59 J/K-mol, showing it to be non-spontaneous as well as increasing order in the system.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study presents the catalysed conversion of Calophyllum inophyllum oil with methanol into biodiesel using a single stage approach. Here, the catalyst development essentially valorises waste Aegle marmelos fruit shell through carbonization and subsequent doping with KOH. An indigenously developed heterogeneous catalyst was obtained that can be easily recovered and reused multiple times, proving to be cost efficient according to calculated estimates. This also reduces fuel synthesis costs owing to drastic reduction in wastewater generation. The reaction is optimized through central composite design (CCD) using five process parameters viz. reaction temperature, duration, catalyst concentration, methanol concentration and agitation speed, which resulted in maximum fuel yield of 95.77 %. Conversion of oil was optimal using methanol at 40 %w/w concentration at 60 °C reaction temperature, when the reaction occurs for a duration of 150 min with KOH-doped catalyst at 4 %w/w concentration, requiring a high agitation speed of 850 rpm. From analysis of variance (ANOVA) studies it is clear that the developed model is consistent and statistically relevant. From kinetic and thermodynamic studies, it is seen that the base catalysed transesterification has an activation energy (Ea) = 98.895 kJ/mol and frequency factor (A) = 90.74 min-1, as the reaction is endothermic since enthalpy change (ΔH) was noted to be 809.64 J, along with an entropy change (ΔS) of -64.59 J/K-mol, showing it to be non-spontaneous as well as increasing order in the system.
用koh掺杂的蜜瓜生物炭催化剂解译花椒油甲醇分解制备生物柴油:热动力学、优化和成本分析
本研究采用单阶段法,用甲醇催化将茶树油转化为生物柴油。在这里,催化剂的开发本质上是通过碳化和随后的KOH掺杂使废埃格尔甜瓜果壳增值。获得了一种易于回收和多次重复使用的自主开发的多相催化剂,根据计算估计证明了其成本效益。由于废水产生的急剧减少,这也降低了燃料合成成本。采用中心复合设计(CCD)对反应温度、反应时间、催化剂浓度、甲醇浓度和搅拌速度5个工艺参数进行优化,使反应收率达到95.77%。反应温度为60℃,甲醇浓度为40% w/w, koh掺杂催化剂浓度为4% w/w,反应时间为150 min,搅拌速度为850 rpm。从方差分析(ANOVA)研究中可以清楚地看出,所开发的模型是一致的,并且具有统计相关性。从动力学和热力学研究中可以看出,碱催化酯交换反应的活化能(Ea) = 98.895 kJ/mol,频率因子(A) = 90.74 min-1,因为该反应是吸热反应,焓变(ΔH)为809.64 J,熵变(ΔS)为-64.59 J/K-mol,表明该反应是非自发的,并且在体系中呈递增顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信