{"title":"Na2S in-situ infiltrated in actived carbon as high-efficiency presodiation additives for sodium ion hybrid capacitors","authors":"Mengfan Pei, Dongming Liu, Xin Jin, Borui Li, Wanyuan Jiang, Zihui Song, Xigao Jian, Fangyuan Hu","doi":"10.1002/cnl2.127","DOIUrl":"10.1002/cnl2.127","url":null,"abstract":"<p>Sodium ion hybrid capacitors (SIHC) are emerging as promising next-generation energy storage devices with high energy/power density. Presodiation is an essential part of SIHC production due to the lack of sodium sources in the cathode and anode. However, in the current presodiation methods, electrochemical presodiation by galvanostatic current charging and discharging requires a temporary half-cell or a complex reassembling process, which severely hinders the commercialization of SIHC. Herein, in situ synthesized Na<sub>2</sub>S infiltrated in activated carbon was used as a sodium salt additive for supplying Na<sup>+</sup> in SIHC. Due to a low ratio of Na<sub>2</sub>S additive attributed to high theoretical specific capacity, the fabricated Na<sub>2</sub>S/activated carbon composite//HC SIHC can show a higher energy density of 129.71 Wh kg<sup>−1</sup> than previously reported SIHC on presodiation of cathode additives. Moreover, the designed SIHC shows an excellent cycling performance of 10,000 cycles, which is attributed to the Na<sub>2</sub>S additive with the advantages of low decomposition potential and no gas generation. This work provides a novel approach for the fabrication of highly efficient Na<sub>2</sub>S additive composite cathodes for SIHC.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 3","pages":"461-470"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140696841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front Cover: Carbon Neutralization, Volume 3, Issue 2, March 2024","authors":"","doi":"10.1002/cnl2.125","DOIUrl":"https://doi.org/10.1002/cnl2.125","url":null,"abstract":"<p><b>Front cover image:</b> The cover image shows a zirconium substitution strategy being used to improve the electrochemical performance of the NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3-x</sub>Zr<sub>x</sub>O<sub>2</sub> cathode materials for sodium-ion battieries, thereby promoting the commercial use of sodium-ion battieries in low-speed electric vehicles and energy storage. The modification mechanism is to achieve the purpose of micromodulation of crystal structure through the partial substitution of Zr element for Mn element in the transition metal layer.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"i"},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Back Cover Image: Carbon Neutralization, Volume 3, Issue 2, March 2024","authors":"","doi":"10.1002/cnl2.126","DOIUrl":"https://doi.org/10.1002/cnl2.126","url":null,"abstract":"<p><b>Back cover image:</b> The cover image shows the form-stable PCMs with recyclable skeletons used as green and efficient thermal storage materials. Through heat exchange and heat storage functions, recyclable skeleton-based form-stable PCMs achieve temperature regulation and energy conservation through phase transition. The energy-saving temperature control effect has promoted the widespread and efficient application of recyclable skeleton-based form-stable PCMs in various fields, including Biomedicine, Electronics industry, Energy-saving building, Information blocking, and more.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"ii"},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of dangling and staggered stacking aldehyde in covalent organic frameworks for 2e− oxygen reduction reaction","authors":"Shuang Zheng, Zhaofeng Ouyang, Minghao Liu, Shuai Bi, Guojuan Liu, Xuewen Li, Qing Xu, Gaofeng Zeng","doi":"10.1002/cnl2.123","DOIUrl":"10.1002/cnl2.123","url":null,"abstract":"<p>Covalent organic frameworks (COFs) have been utilized as the ideal candidates to preciously construct electrocatalysts. However, the highly ordered degree of COFs renders the catalytic centers closely stacked, which limits the utilization efficiency of catalytic sites. Herein, we have first constructed dangling and staggered-stacking aldehyde (–CHO) from [4 + 3] COFs as catalytic centers for 2e<sup>−</sup> oxygen reduction reaction (ORR). The new catalytic COFs have unreacted dangling -CHO out of the COFs' planes, which are more easily exposed in electrolytes than the sites in the frameworks. More importantly, these –CHO adopt staggered stacking models, and thus provide larger space for mass transport than those with eclipsed stacking models. In addition, by tuning the triratopic linkers in the COFs, the catalytic properties are well modulated. The optimized COF shows high selectivity and activity for 2e<sup>−</sup> ORR, with H<sub>2</sub>O<sub>2</sub> selectivity of 91%, and mass activity of 12.2 A g<sup>−1</sup>, respectively. The theoretical calculation further reveals the higher activity for the pyridine-contained B18C6-PTTA-COF due to the promoted binding ability of the intermediate OOH* at the carbon in dangling –CHO. This work provides us with a new insight into designing electrocatalysts based on COFs.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 3","pages":"415-422"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140379777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in energy storage and applications of form-stable phase change materials with recyclable skeleton","authors":"Yuan Jia, Yaoting Jiang, Yunshi Pan, Xinmei Zou, Qian Zhang, Xiaojian Gao, Jingxi Zhang, Kunyang Yu, Yingzi Yang, Yushi Liu","doi":"10.1002/cnl2.117","DOIUrl":"10.1002/cnl2.117","url":null,"abstract":"<p>With the expansion of the global population, the energy shortage is becoming increasingly acute. Phase change materials (PCMs) are considered green and efficient mediums for thermal energy storage, but the leakage problem caused by volume instability during phase change limits their application. Encapsulating PCMs with supporting materials can effectively avoid leakage, but most supporting materials are expensive and consume huge of natural resources. Carbon materials, which are rich and renewable resources, can be used as economical and environmentally friendly supporting skeletons to prepare form-stable PCMs. Although many researchers have begun to use recyclable materials especially various derivatives of carbon as supporting skeletons to prepare form-stable PCMs, the preparation methods, thermophysical properties and applications of form-stable PCMs with recyclable skeletons have rarely been systematically summarized yet. Form-stable PCMs with a recyclable skeleton can be used as green and efficient thermal storage materials due to their high heat storage capacity and good thermophysical stability after 2000 thermal cycles. This review investigates the effects of recyclable skeletons on the thermophysical properties including phase change temperature, latent heat, thermal conductivity, supercooling, and thermal cycling reliability. Four major kinds of recyclable skeletons are focused on: biomass, biochar, industrial by-products as well as waste incineration ash. Additionally, the application scales of form-stable PCMs with recyclable skeletons are explicated in depth. Moreover, the main challenges confronted by form-stable PCMs with recyclable skeletons are discussed, and future research trends are proposed. This article provides a systematic review of the form-stable PCMs with recyclable skeletons, giving significant guidance for further reducing carbon emissions and promoting the development of sustainable energy.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"313-343"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140241334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing high-performance one-dimensional Si/carbon anodes: Current status and challenges","authors":"Xinyu Chen, Yongbiao Mu, Zifan Liao, Youqi Chu, Shaowei Kang, Bu-ke Wu, Ruixi Liao, Meisheng Han, Yiju Li, Lin Zeng","doi":"10.1002/cnl2.118","DOIUrl":"10.1002/cnl2.118","url":null,"abstract":"<p>Silicon (Si) anodes, known for their high capacity, confront obstacles such as volume expansion, the solid–electrolyte interface (SEI) formation, and limited cyclability, driving ongoing research for innovative solutions to enhance their performance in next-generation lithium-ion batteries (LIBs). This comprehensive review explores the forefront of one-dimensional (1D) Si/carbon anodes for high-performance LIBs. This review delves into cutting-edge strategies for fabricating 1D Si/carbon structures, such as nanowires, nanotubes, and nanofibers, highlighting their advantages in mitigating volume expansion, enhancing electron/ion transport, and bolstering cycling stability. The review showcases remarkable achievements in 1D Si/carbon anode performance, including exceptional capacity retention, high-rate capability, and prolonged cycle life. Challenges regarding scalability, cost-effectiveness, and long-term stability are addressed, providing insights into the path to commercialization. Additionally, future directions and potential breakthroughs are outlined, guiding researchers and industries toward harnessing the potential of 1D Si/carbon anodes in revolutionizing energy storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"199-221"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawei Shi, Jun Ma, Enze Ma, Jing Li, Yang Hu, Liyuan Fan, Weiwei Cai
{"title":"Electrochemical alcohol oxidation reaction on Precious-Metal-Free catalysts: Mechanism, activity, and selectivity","authors":"Jiawei Shi, Jun Ma, Enze Ma, Jing Li, Yang Hu, Liyuan Fan, Weiwei Cai","doi":"10.1002/cnl2.116","DOIUrl":"https://doi.org/10.1002/cnl2.116","url":null,"abstract":"<p>The electrochemical alcohol oxidation reaction (AOR) is pivotal for the development of sustainable energy. The complete oxidation of alcohols has attracted extensive attention as a vital process in fuel cells. Moreover, as an alternative reaction to the oxygen evolution reaction, the selective oxidation of alcohols emerges as an effective means to lower the energy expenditure associated with electrolytic hydrogen production while yielding high-value products. Nonprecious metal materials have been widely applied in the selective oxidation catalysis of alcohols due to their cost-effectiveness and excellent durability. In recent years, leveraging the advantages of nonprecious metal materials in electrocatalytic AOR, researchers have delved into catalytic mechanisms and various efficient catalysts have been fabricated and evaluated. This review provides an overview of the current advancements in the electrocatalytic selective oxidation of diverse alcohols and the catalytic systems centered around nonprecious metal materials. It systematically summarizes the shared traits and distinctions in catalytic reaction characteristics across various systems, thereby laying the theoretical foundation for developing novel catalyst systems that are efficient, stable, and highly selective. This review will facilitate the utilization of nonprecious metal catalysts further toward the electrocatalytic oxidation of alcohols.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"285-312"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenbo You, Wentao Zou, Siyi Jiang, Jiahao Zhang, Yunchen Ge, Gui Lu, Detlef W. Bahnemann, Jia Hong Pan
{"title":"Fluorescent carbon quantum dots with controllable physicochemical properties fantastic for emerging applications: A review","authors":"Wenbo You, Wentao Zou, Siyi Jiang, Jiahao Zhang, Yunchen Ge, Gui Lu, Detlef W. Bahnemann, Jia Hong Pan","doi":"10.1002/cnl2.120","DOIUrl":"10.1002/cnl2.120","url":null,"abstract":"<p>Carbon quantum dots (CQDs) have emerged as prominent contenders in the realm of luminescent nanomaterials over the past decade owing to their tunable optical properties, robust photostability, versatile surface functionalization and doping potential, low toxicity, and straightforward synthesis utilizing environmentally friendly precursors. In this review, we commence with a concise introduction, presenting both top-down and bottom-up strategies for the eco-friendly synthesis of CQDs. Subsequently, we delve into a comprehensive examination of CQDs' structure and optical characteristics, encompassing their ultraviolet–visible absorption properties, surface confinement effects, and surface state emissions contributing to room-temperature photoluminescence (PL). This review proceeds to elucidate recent advancements in modification strategies for CQDs, specifically focusing on surface oxidation, passivation, and the incorporation of heteroatoms. These strategies serve to afford control over the physicochemical properties, facilitating the enhancement of PL through the decoration of highly visible-responsive CQDs. This enhancement is achieved by suppressing the nonradiative recombination of electron-hole pairs, enabling red/blue shifts in CQDs for the generation of a full-color emission spectrum, and regulating the band-gap and surface states to broaden the photoabsorption range. Finally, we offer an overview of the most recent developments in the applications of fluorescent CQDs, emphasizing their utility in biomedicine, fluorescent sensors, lighting, and displays, as well as photocatalysis.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"245-284"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140258403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longwei Li, Rongrong Li, Shaojie Zhou, Wenjun Xu, Yu Li, Jingmin Zhang, Lei Gao, Xiong Pu
{"title":"Core-shell Ni/NiO heterostructures as catalytic cathodes enabling high-performance zinc bromine flow batteries","authors":"Longwei Li, Rongrong Li, Shaojie Zhou, Wenjun Xu, Yu Li, Jingmin Zhang, Lei Gao, Xiong Pu","doi":"10.1002/cnl2.119","DOIUrl":"10.1002/cnl2.119","url":null,"abstract":"<p>Zinc bromine flow batteries (ZBFBs) are well suited for stationary energy storage due to their attractive features of high energy density and low cost. Nevertheless, the ZBFBs suffer from low power density and limited efficiency owing to the relatively severe polarization of the Br<sub>2</sub>/Br<sup>−</sup> redox couple. Herein, a three-dimensional (3D) hierarchical composite electrode based on core-shell Ni/NiO heterostructures anchored on graphite felt (Ni/NiO@GF) is designed to promote the kinetics of the Br<sub>2</sub>/Br<sup>−</sup> couple, so as to improve the power density and efficiency of the ZBFB. In this design, the highly conductive carbon felt and Ni cores provide a composite electrode with a 3D electron transporting framework to guarantee excellent electronic conductivity, while the NiO shells possess great absorption ability to Br<sub>2</sub> and brilliant catalytic activity for the Br<sub>2</sub>/Br<sup>−</sup> redox reaction to reduce the electrochemical polarization. As a result, an enhanced ZBFB with Ni/NiO@GF electrode shows an outstanding energy efficiency of 86% at 20 mA cm<sup>−2</sup> and can be operated at a current density of up to 160 mA cm<sup>−2</sup> with a respectable energy efficiency of 67%. These results exhibit a promising strategy to fabricate catalytic electrodes for high-performance ZBFBs.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"222-232"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability challenges and opportunities of NiFe-based electrocatalysts for oxygen evolution reaction in alkaline media","authors":"Yujun Han, Jingyi Wang, Yuhang Liu, Tianqi Li, Tongzhou Wang, Xinyue Li, Xinran Ye, Guodong Li, Jihong Li, Wenbin Hu, Yida Deng","doi":"10.1002/cnl2.110","DOIUrl":"https://doi.org/10.1002/cnl2.110","url":null,"abstract":"<p>Water splitting is a critical process for the production of green hydrogen, contributing to the advancement of a circular economy. However, the application of water splitting devices on a large scale is primarily impeded by the sluggish oxygen evolution reaction (OER) at the anode. Thus, developing and designing efficient OER catalysts is a significant target. NiFe-based catalysts are extensively researched as excellent OER electrocatalysts due to their affordability, abundant reserves, and intrinsic activities. However, they still suffer from long-term stability challenges. To date, few systematic strategies for improving OER durability have been reported. In this review, various advanced NiFe-based catalysts are introduced. Moreover, the OER stability challenges of NiFe-based electrocatalysts in alkaline media, including iron segregation, structural degradation, and peeling from the substrate are summarized. More importantly, strategies to enhance OER stability are highlighted and opportunities are discussed to facilitate future stability studies for alkaline water electrolysis. This review presents a design strategy for NiFe-based electrocatalysts and anion exchange membrane (AEM) electrolyzers to overcome stability challenges in OER, which also emphasizes the importance of long-term stability in alkaline media and its significance for achieving large-scale commercialization.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"172-198"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}