{"title":"MXene ink printing of high-performance micro-supercapacitors","authors":"Yitong Wang, Yuhua Wang","doi":"10.1002/cnl2.165","DOIUrl":"https://doi.org/10.1002/cnl2.165","url":null,"abstract":"<p>The addition of two-dimensional MXene materials gives micro-supercapacitors (MSCs) the advantages of higher power density, faster charging and discharging speeds, and longer lifetimes. To date, various fabrication methods and strategies have been used to finely synthesize MXene electrodes. However, different technologies not only affect the electrode structure of MXene but also directly affect the performance of MSCs. Here, we provide a comprehensive and critical review of the design and microfabrication strategies for MXene's fork-finger microelectrodes. First, we provide a systematic overview of micromachining techniques applied to MXene, including graphic cutting, screen-printing, 3D printing, inkjet, and stamp methods. In addition, we discuss in detail the advantages and disadvantages of these machining techniques, summarizing the environment in which the technique is used and the results expected to be achieved. Finally, the challenges as well as the outlook for future applications are summarized to promote the further development of MXene materials in the field of MSCs.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"798-817"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengwei Xu, Kangwei Song, Xinyue Chang, Li Li, Weicheng Zhang, Yixun Xue, Jiahui Zhang, Dewu Lin, Zheyuan Liu, Qian Wang, Yan Yu, Chengkai Yang
{"title":"Layered oxide cathodes: A comprehensive review of characteristics, research, and development in lithium and sodium ion batteries","authors":"Zhengwei Xu, Kangwei Song, Xinyue Chang, Li Li, Weicheng Zhang, Yixun Xue, Jiahui Zhang, Dewu Lin, Zheyuan Liu, Qian Wang, Yan Yu, Chengkai Yang","doi":"10.1002/cnl2.162","DOIUrl":"https://doi.org/10.1002/cnl2.162","url":null,"abstract":"<p>Layered oxide materials are widely used in the field of energy storage and conversion due to their high specific energy, high efficiency, long cycle life, and high safety. Herein, We summarize the latest research progress in the field of layered metal oxide cathode materials from three aspects: challenges faced, failure mechanisms, and modification methods. We also compare the characteristics of lithium-based layered oxides and sodium-based layered oxides, and predict future development directions. The layered oxide cathode materials for sodium-ion batteries and lithium-ion batteries exhibit overall structural and operational similarities. There are also some differences, such as lattice parameters and application extent. Sodium-ion battery cathode materials need to explore new materials and address structural instability issues, while lithium-ion batteries require finding alternative materials and improving production efficiency. Future challenges for both types of materials include enhancing capacity and cycle performance, elucidating deep mechanisms, reducing costs, and improving resource sustainability. Future development should focus on balancing cycle stability and charge cut-off voltage to meet the growing demand for battery applications.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"832-856"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte","authors":"Miao Yan, Qi Fang, Rui Ding, Yi Li, Jian Guo, Jinmei Xie, Yuzhen Zhang, Yuming He, Ziyang Yan, Zhiqiang Chen, Xiujuan Sun, Enhui Liu","doi":"10.1002/cnl2.163","DOIUrl":"https://doi.org/10.1002/cnl2.163","url":null,"abstract":"<p>To unveil the charge storage mechanisms and interface properties of electrode materials is very challenging for Na-ion storage. In this work, we report that the novel layered perovskite Bi<sub>2</sub>TiO<sub>4</sub>F<sub>2</sub>@reduced graphene oxides (BTOF@rGO) serves as a promising anode for Na-ion storage in an ether-based electrolyte, which exhibits much better electrochemical performance than in an ester-based electrolyte. Interestingly, BTOF@rGO possesses a prominent specific capacity of 458.3–102 mAh g<sup>−1</sup>/0.02–1 A g<sup>−1</sup> and a high initial coulombic efficiency (ICE) of 70.3%. Cross-sectional morphology and depth profile surface chemistry indicate not only a denser reactive interfacial layer but also a superior solid electrolyte interface film containing a higher proportion of inorganic components, which accelerates Na<sup>+</sup> migration and is an essential factor for the improvement of ICE and other electrochemical properties. Electrochemical tests and ex situ measurements demonstrate the triple hybridization Na-ion storage mechanism of conversion, alloying, and intercalation for BTOF@rGO in the ether-based electrolyte. Furthermore, the Na-ion batteries assembled with the BTOF@rGO anode and the commercial Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>@C cathode exhibit remarkable energy densities and power densities. Overall, the work shows deep insights on developing advanced electrode materials for efficient Na-ion storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"818-831"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A systematic study of switching, optoelectronics, and gas-sensitive properties of PCF-graphene-based nanodevices: Insights from DFT study","authors":"Wenhao Yang, Tong Chen, Luzhen Xie, Yang Yu, Mengqiu Long, Liang Xu","doi":"10.1002/cnl2.156","DOIUrl":"10.1002/cnl2.156","url":null,"abstract":"<p>Two-dimensional materials exhibit significant potential and wide-ranging application prospects owing to their remarkable tunability, pronounced quantum confinement effects, and notable surface sensitivity. The switching, optoelectronics, and gas-sensitive properties of the new carbon material poly-cyclooctatetraene framework (PCF)-graphene were systematically studied using density functional theory combined with the nonequilibrium Green's function method. First, the diode device based on PCF-graphene monolayer exhibited an impressive switching ratio of 10<sup>6</sup>, demonstrating excellent diode characteristics. Moreover, in the investigation of the pin junction utilizing monolayer PCF-graphene, it is noteworthy that significant photocurrent responses were observed in both the zigzag and armchair directions, specifically within the visible and ultraviolet regions. Finally, gas sensors employing monolayer and bilayer PCF-graphene demonstrate significant chemical adsorption capabilities for NO and NO<sub>2</sub>. Notably, the maximum gas sensitivity for NO is achieved in monolayer PCF-graphene, reaching 322% at a bias voltage of 1.0 V. Meanwhile, for bilayer PCF-graphene-based gas sensor, the maximum gas sensitivity reaches 52% at a bias voltage of 0.4 V. In addition, the study also examined the influence of various environmental conditions, specifically H<sub>2</sub>O, O, and OH, on the system under investigation. The obtained results emphasize the multifunctional properties of PCF-graphene, exhibiting significant potential for various applications, including switching devices, optoelectronic devices, and gas sensors.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"904-917"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging strategies for the improvement of modifications in aqueous rechargeable zinc–iodine batteries: Cathode, anode, separator, and electrolyte","authors":"Yuwei Zhao, Xinyu Chen, Weina Guo, Chenyang Zha","doi":"10.1002/cnl2.155","DOIUrl":"https://doi.org/10.1002/cnl2.155","url":null,"abstract":"<p>Aqueous rechargeable zinc–iodine batteries have gained traction as a promising solution due to their suitable theoretical energy density, cost-effectiveness, eco-friendliness, and safety features. However, challenges such as the polyiodide shuttle effect, low iodine cathode conductivity, zinc anode dendritic growth, and the requirement for efficient separators and electrolytes hinder their commercial prospects. Hence, this review highlights recent progress in refining the core optimization strategies of zinc–iodine batteries, focusing on enhancements to the cathode, anode, separator, and electrolyte. Cathode improvements involve the addition of inorganic, organic, and hybrid materials to counteract the shuttle effect and boost redox kinetics, where these functional materials also are applied in anode modifications to curb dendritic growth and enhance cycling stability. Meanwhile, cell separator design approaches that effectively block polyiodide shuttle while promoting uniform zinc deposition are also discussed, while electrolyte innovations target zinc corrosion and polyiodide dissolution. Ultimately, the review aims to map out a strategy for developing zinc–iodine batteries that are efficient, safe, and economical, aligning with the demands of contemporary energy storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"918-949"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front Cover: Carbon Neutralization, Volume 3, Issue 4, July 2024","authors":"","doi":"10.1002/cnl2.159","DOIUrl":"https://doi.org/10.1002/cnl2.159","url":null,"abstract":"<p><b>Front cover image:</b> By serving as conductive binders, active material hosts, current collectors, and even as components of separators and interlayers, MXenes have demonstrated their adaptability and multifunctionality in different battery chemistries. Their ability to mitigate issues like dendrite growth, shuttle effects, and poor mechanical stability have significant implications for extending battery lifespan, increasing energy density, and ensuring operational safety.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"i"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Back Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024","authors":"","doi":"10.1002/cnl2.161","DOIUrl":"https://doi.org/10.1002/cnl2.161","url":null,"abstract":"<p><b>Back cover image:</b> Currently, developing advanced energy storage and conversion systems is of great significance. In the review, the strategies for realizing high-performance anode-free rechargeable batteries enabled by interfacial regulation engineering are summarized, mainly including designing of current collector, introducing of surface coating layers, modification of electrolyte, separators engineering and cathode materials regulation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"iii"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inside Front Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024","authors":"","doi":"10.1002/cnl2.160","DOIUrl":"https://doi.org/10.1002/cnl2.160","url":null,"abstract":"<p><b>Inside front cover image:</b> The image is related to the recycling of chicken feathers, aiming to state the energy and environmental applications of materials derived from chicken feathers. In this image, the applications, such as battery, catalysis and architectural field, surround a chicken feather, demonstrating the application potential of chicken feather waste. Besides, the clear water and beautiful environment indicate the effectiveness of recycled chicken feathers in energy and environmental fields.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"ii"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yikun Cheng, Pengjie Fu, Zhipeng Yu, Xiaodong Yang, Yangrui Zhang, Aojie Yuan, Huan Liu, Jianhao Du, Long Chen
{"title":"Modulation of the multiphase phosphorus/sulfide heterogeneous interface via rare earth for solar-enhanced water splitting at industrial-level current densities","authors":"Yikun Cheng, Pengjie Fu, Zhipeng Yu, Xiaodong Yang, Yangrui Zhang, Aojie Yuan, Huan Liu, Jianhao Du, Long Chen","doi":"10.1002/cnl2.157","DOIUrl":"https://doi.org/10.1002/cnl2.157","url":null,"abstract":"<p>Photoelectrically coupling water splitting at high current density is a promising approach for the acquisition of green hydrogen energy. However, it places significant demands on the photo/electrocatalysts. Herein, rare earth elements doping NiMoO<sub>4</sub>-based phosphorus/sulfide heterostructure nanorod arrays (RE-NiMo-PS@NF [RE = Y, Er, La, and Sc]) are obtained for solar-enhanced electrocatalytic water splitting at high current densities. The results of the experiment and density-functional theory studies illustrate that the Y element as a dopant not only makes the NiMoP<sub>2</sub>/NiMo<sub>3</sub>S<sub>4</sub>/NiMoO<sub>4</sub> heterostructure exhibit excellent solar-enhanced electrocatalytic activity (hydrogen evolution reaction [HER]: <i>η</i><sub>1000</sub> = 211 mV, oxygen evolution reaction [OER]: <i>η</i><sub>1000</sub> = 367 mV) but also optimizes the heterostructure interfacial electron density distributions and HER free energy. In addition, Y-NiMo-PS@NF achieves 18.64% solar-to-hydrogen efficiency. This study not only provides a new way to synthesize heterostructure electrocatalysts but also inspires the application of solar enhancement strategies for high current density water splitting.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"873-887"},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yankun Wang, He Sun, Zhuxian Yang, Yanqiu Zhu, Yongde Xia
{"title":"Bismuth-based metal-organic frameworks and derivatives for photocatalytic applications in energy and environment: Advances and challenges","authors":"Yankun Wang, He Sun, Zhuxian Yang, Yanqiu Zhu, Yongde Xia","doi":"10.1002/cnl2.153","DOIUrl":"10.1002/cnl2.153","url":null,"abstract":"<p>Photocatalysis is an environmentally friendly technology for the utilizations of solar energy and has garnered significant attention in both scientific and industrial sectors. Developing cost-effective semiconductive materials is the core issue in photocatalysis. Bismuth-based metal-organic frameworks (Bi-MOFs) have emerged as attractive candidates in various photocatalytic applications, and Bi-MOFs derivatives further expand and consolidate their promising potential in the realm of photocatalysis. Various modification strategies including in-situ tailoring or external doping, as well as meticulous design and selection of metal nodes and organic linkers allow for fine control over the surface multifunctionality in Bi-MOF-based and derived photocatalytic composites with adjustable energy band structures and enhanced photocatalytic performance. In this review, the recent progress in the synthesis of diverse Bi-MOFs-based materials, Bi-MOFs derivatives, and their Bi-containing semiconductive composites were systemically analyzed and reviewed. The state-of-the-art research progresses in the applications of Bi-MOFs and derivatives, as well as composites in photocatalytic water splitting for hydrogen production, photodegradation of organic pollutants, and photocatalytic carbon dioxide reduction are comprehensively summarized. The relationships between structures, properties, and photocatalytic performance of Bi-based semiconductive composites are discussed in detail. In addition, the perspectives and future challenges on Bi-MOFs-based and derived materials for photocatalytic applications are also offered.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"737-767"},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141678246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}