柔性非对称超级电容器Ti3C2Tx MXene上扩展层间距的MnO2纳米花嵌入

IF 12
Yi Zhang, Can Tang, Shun Lu, Yi Zeng, Qingsong Hua, Yongxing Zhang
{"title":"柔性非对称超级电容器Ti3C2Tx MXene上扩展层间距的MnO2纳米花嵌入","authors":"Yi Zhang,&nbsp;Can Tang,&nbsp;Shun Lu,&nbsp;Yi Zeng,&nbsp;Qingsong Hua,&nbsp;Yongxing Zhang","doi":"10.1002/cnl2.70006","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO<sub>2</sub>@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO<sub>2</sub> combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO<sub>2</sub> increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO<sub>2</sub>@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g⁻¹), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO<sub>2</sub>@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70006","citationCount":"0","resultStr":"{\"title\":\"MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors\",\"authors\":\"Yi Zhang,&nbsp;Can Tang,&nbsp;Shun Lu,&nbsp;Yi Zeng,&nbsp;Qingsong Hua,&nbsp;Yongxing Zhang\",\"doi\":\"10.1002/cnl2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO<sub>2</sub>@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO<sub>2</sub> combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO<sub>2</sub> increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO<sub>2</sub>@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g⁻¹), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO<sub>2</sub>@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器以功率密度高、充放电速度快和循环寿命长而闻名,是一种前景广阔的储能解决方案。最近,Ti3C2Tx MXene(二维 MXene 家族的成员)成为超级电容器的潜在电极材料。然而,其有限的层间距阻碍了其更广泛的应用。在本研究中,我们采用水热法合成了一种新型δ-MnO2@MXene 异质结构,它具有更宽的层间距。这种设计提高了电荷转移效率,改善了各组分之间的接触,从而显著提高了超级电容器的性能。δ-MnO2独特的纳米花状结构与MXene相结合,大大提高了电容保持率和离子扩散率,超越了每种材料的性能。δ-MnO2 的海绵状结构增加了可访问的电荷存储位点,并拓宽了 MXene 的层间间隙,有利于离子更好地迁移。因此,δ-MnO2@MXene 电极的电容是单独 MXene 电极的 54 倍(2.0 F g-¹),速率能力高达 67.3%(电流密度增加 20 倍后),并且具有优异的循环稳定性,在循环 10,000 次后仍能保持 93% 的容量。这种新型 δ-MnO2@MXene 异质结构显著提高了电化学性能,使其成为先进储能应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors

MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors

Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti3C2Tx MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO2@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO2 combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO2 increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO2@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g⁻¹), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO2@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信