Unveiling Long-Term Storage Failure Mechanisms of Single-Crystal High-Nickel Cathodes During Air Exposure

IF 12
Ran An, Yuefeng Su, Yihong Wang, Yongjian Li, Enhua Dong, Jinglin Zhao, Pengfei Yan, Qing Huang, Meng Wang, Lai Chen, Feng Wu, Ning Li
{"title":"Unveiling Long-Term Storage Failure Mechanisms of Single-Crystal High-Nickel Cathodes During Air Exposure","authors":"Ran An,&nbsp;Yuefeng Su,&nbsp;Yihong Wang,&nbsp;Yongjian Li,&nbsp;Enhua Dong,&nbsp;Jinglin Zhao,&nbsp;Pengfei Yan,&nbsp;Qing Huang,&nbsp;Meng Wang,&nbsp;Lai Chen,&nbsp;Feng Wu,&nbsp;Ning Li","doi":"10.1002/cnl2.70008","DOIUrl":null,"url":null,"abstract":"<p>Single-crystal high-nickel cathode (SC-HN) materials are promising candidates for advanced lithium-ion batteries due to their exceptional volumetric and gravimetric energy densities. However, SC-HN materials face air instability, causing distinct storage failure mechanisms compared to polycrystalline high-nickel cathode (PC-HN) materials. The characteristics of SC-HN, such as their lower specific surface area and reduced grain boundaries, make their failure mechanisms distinct and not directly applicable to PC-HN materials. To address these unique degradation pathways, this study systematically investigated the storage failure mechanisms of SC-HN material under ambient air exposure. Using advanced characterization techniques including soft X-ray absorption spectra (sXAS), wide-angle X-ray scattering (WAXS), aberration-corrected scanning transmission electron microscopy (STEM), and etching-based X-ray photoelectron spectroscopy (XPS), we conducted comprehensive multi-dimensional analyses over 6 months to track the evolution of chemical and structural changes. The results reveal that SC-HN materials experience a nonlinear progression of structural and surface composition degradation, and surface structural transformations are found to be the main cause of performance decline. The findings deepen understanding of SC-HN air instability and provide a basis for targeted strategies to enhance storage stability.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-crystal high-nickel cathode (SC-HN) materials are promising candidates for advanced lithium-ion batteries due to their exceptional volumetric and gravimetric energy densities. However, SC-HN materials face air instability, causing distinct storage failure mechanisms compared to polycrystalline high-nickel cathode (PC-HN) materials. The characteristics of SC-HN, such as their lower specific surface area and reduced grain boundaries, make their failure mechanisms distinct and not directly applicable to PC-HN materials. To address these unique degradation pathways, this study systematically investigated the storage failure mechanisms of SC-HN material under ambient air exposure. Using advanced characterization techniques including soft X-ray absorption spectra (sXAS), wide-angle X-ray scattering (WAXS), aberration-corrected scanning transmission electron microscopy (STEM), and etching-based X-ray photoelectron spectroscopy (XPS), we conducted comprehensive multi-dimensional analyses over 6 months to track the evolution of chemical and structural changes. The results reveal that SC-HN materials experience a nonlinear progression of structural and surface composition degradation, and surface structural transformations are found to be the main cause of performance decline. The findings deepen understanding of SC-HN air instability and provide a basis for targeted strategies to enhance storage stability.

Abstract Image

揭示单晶高镍阴极暴露于空气中的长期储存失效机制
单晶高镍阴极(SC-HN)材料由于其优异的体积和重量能量密度而成为先进锂离子电池的有希望的候选者。然而,SC-HN材料面临空气不稳定性,与多晶高镍阴极(PC-HN)材料相比,导致不同的存储失效机制。SC-HN较低的比表面积和较小的晶界等特性使其破坏机制不同,不能直接适用于PC-HN材料。为了解决这些独特的降解途径,本研究系统地研究了SC-HN材料在环境空气暴露下的储存失效机制。利用先进的表征技术,包括软x射线吸收光谱(sXAS)、广角x射线散射(WAXS)、像差校正扫描透射电子显微镜(STEM)和基于蚀刻的x射线光电子能谱(XPS),我们在6个月内进行了全面的多维分析,以跟踪化学和结构变化的演变。结果表明,SC-HN材料经历了结构和表面成分的非线性降解过程,表面结构转变是导致材料性能下降的主要原因。这些发现加深了对SC-HN空气不稳定性的理解,并为提高储存稳定性的有针对性策略提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信