Tuning the Electronic Structure of Niobium Oxyphosphate/Reduced Graphene Oxide Composites by Vanadium-Doping for High-Performance Na+ Storage Application

Zhongteng Chen, Tao Tao, Chenglong Shi, Xiaoyan Shi, Lianyi Shao, Junling Xu, Zhipeng Sun
{"title":"Tuning the Electronic Structure of Niobium Oxyphosphate/Reduced Graphene Oxide Composites by Vanadium-Doping for High-Performance Na+ Storage Application","authors":"Zhongteng Chen,&nbsp;Tao Tao,&nbsp;Chenglong Shi,&nbsp;Xiaoyan Shi,&nbsp;Lianyi Shao,&nbsp;Junling Xu,&nbsp;Zhipeng Sun","doi":"10.1002/cnl2.70010","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries have become a significant research focus in academia. As a novel sodium anode material, layered NbOPO<sub>4</sub>, consisting of octahedral NbO<sub>6</sub> units sharing oxygen atoms with tetrahedral PO₄ units, exhibits stability due to strong phosphorus-oxygen covalent bonds that prevent oxygen loss from the framework. However, its inherently low electrical conductivity and sluggish charge transfer kinetics limit its electrochemical performance. To address these challenges, we designed and synthesized vanadium-doped niobium oxyphosphate coated with reduced graphene oxide (V-NbOPO<sub>4</sub>@rGO) via a microwave hydrothermal method followed by calcination. Vanadium doping effectively modulated the electronic structure of NbOPO<sub>4</sub> and significantly enhanced its conductivity, as corroborated by density functional theory (DFT) calculations. Consequently, the V<sub>0.15</sub>-NbOPO<sub>4</sub>@rGO electrode demonstrated exceptional rate capability, achieving 418 mAh g<sup>−1</sup> at a low current density of 0.1 A g<sup>−1</sup> and maintaining a reversible capacity exceeding 100 mAh g<sup>−1</sup> even at an ultrahigh current density of 50 A g<sup>−1</sup>. Furthermore, the reversible sodium storage mechanism of V<sub>0.15</sub>-NbOPO<sub>4</sub>@rGO was validated through in-situ XRD, TEM, and XPS analyses. This study provides an effective strategy for improving the electrochemical performance of NbOPO<sub>4</sub>based anodes and deepens understanding of the sodium storage mechanism in V-doped NbOPO<sub>4</sub>, emphasizing its potential for practical application in sodium-ion batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries have become a significant research focus in academia. As a novel sodium anode material, layered NbOPO4, consisting of octahedral NbO6 units sharing oxygen atoms with tetrahedral PO₄ units, exhibits stability due to strong phosphorus-oxygen covalent bonds that prevent oxygen loss from the framework. However, its inherently low electrical conductivity and sluggish charge transfer kinetics limit its electrochemical performance. To address these challenges, we designed and synthesized vanadium-doped niobium oxyphosphate coated with reduced graphene oxide (V-NbOPO4@rGO) via a microwave hydrothermal method followed by calcination. Vanadium doping effectively modulated the electronic structure of NbOPO4 and significantly enhanced its conductivity, as corroborated by density functional theory (DFT) calculations. Consequently, the V0.15-NbOPO4@rGO electrode demonstrated exceptional rate capability, achieving 418 mAh g−1 at a low current density of 0.1 A g−1 and maintaining a reversible capacity exceeding 100 mAh g−1 even at an ultrahigh current density of 50 A g−1. Furthermore, the reversible sodium storage mechanism of V0.15-NbOPO4@rGO was validated through in-situ XRD, TEM, and XPS analyses. This study provides an effective strategy for improving the electrochemical performance of NbOPO4based anodes and deepens understanding of the sodium storage mechanism in V-doped NbOPO4, emphasizing its potential for practical application in sodium-ion batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信