Carbon Neutralization最新文献

筛选
英文 中文
Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media 碱性介质中氢氧化反应电催化剂的研究进展
Carbon Neutralization Pub Date : 2024-06-25 DOI: 10.1002/cnl2.152
Youze Zeng, Xue Wang, Yang Hu, Wei Qi, Zhuoqi Wang, Meiling Xiao, Changpeng Liu, Wei Xing, Jianbing Zhu
{"title":"Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media","authors":"Youze Zeng,&nbsp;Xue Wang,&nbsp;Yang Hu,&nbsp;Wei Qi,&nbsp;Zhuoqi Wang,&nbsp;Meiling Xiao,&nbsp;Changpeng Liu,&nbsp;Wei Xing,&nbsp;Jianbing Zhu","doi":"10.1002/cnl2.152","DOIUrl":"https://doi.org/10.1002/cnl2.152","url":null,"abstract":"<p>Anion exchange membrane fuel cells (AEMFCs) have been hailed as a promising hydrogen energy technology due to high energy conversion efficiency, zero carbon emission and the potential independence on scare and expensive noble metal electrocatalysts. A variety of platinum group metal (PGM)-free catalysts has been developed with superior catalytic performance to noble metal benchmarks toward cathodic oxygen reduction reactions (ORR). However, PGM electrocatalysts still dominate the anodic catalyst research because the kinetics of hydrogen oxidation reaction (HOR) are two or three orders of magnitude slower than in that acidic media. Therefore, it is urgently desirable to improve noble metal utilization efficiency and/or develop high-performance PGM-free electrocatalysts for HOR, thus promoting the real-world implementation of AEMFCs. In this review, the current research progress of electrocatalysts for HOR in alkaline media is summarized. We start with the discussion on the current HOR reaction mechanisms and existing controversies. Then, methodologies to improve the HOR performance are reviewed. Following these principles, the recently developed HOR electrocatalysts including PGM and PGM-free HOR electrocatalysts in alkaline media are systematically introduced. Finally, we put forward the challenges and prospects in the field of HOR catalysis.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"710-736"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in robust and ultra-thin Li metal anode 坚固超薄锂金属阳极的最新进展
Carbon Neutralization Pub Date : 2024-06-17 DOI: 10.1002/cnl2.147
Zheng Luo, Yang Cao, Guobao Xu, Wenrui Sun, Xuhuan Xiao, Hui Liu, Shanshan Wang
{"title":"Recent advances in robust and ultra-thin Li metal anode","authors":"Zheng Luo,&nbsp;Yang Cao,&nbsp;Guobao Xu,&nbsp;Wenrui Sun,&nbsp;Xuhuan Xiao,&nbsp;Hui Liu,&nbsp;Shanshan Wang","doi":"10.1002/cnl2.147","DOIUrl":"https://doi.org/10.1002/cnl2.147","url":null,"abstract":"<p>Li metal batteries have been widely expected to break the energy-density limits of current Li-ion batteries, showing impressive prospects for the next-generation electrochemical energy storage system. Although much progress has been achieved in stabilizing the Li metal anode, the current Li electrode still lacks efficiency and safety. Moreover, a practical Li metal battery requires a thickness-controllable Li electrode to maximally balance the energy density and stability. However, due to the stickiness and fragile nature of Li metal, manufacturing Li ingot into thin electrodes from conventional approaches has historically remained challenging, limiting the sufficient utilization of energy density in Li metal batteries. Aiming at the practical application of Li metal anode, the current issues and their initiation mechanism are comprehensively summarized from the stability and processability perspectives. Recent advances in robust and ultra-thin Li metal anode are outlined from methodology innovation to provide an overall insight. Finally, challenges and prospective developments regarding this burgeoning field are critically discussed to afford future outlooks. With the development of advanced processing and modification technology, we are optimistic that a truly great leap will be achieved in the foreseeable future toward the industrial application of Li metal batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"647-672"},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-plane ferroelectrics enabling reduced hysteresis in monolayer MoS2 transistors 面内铁电使单层 MoS2 晶体管中的滞后减少
Carbon Neutralization Pub Date : 2024-06-17 DOI: 10.1002/cnl2.148
Mingxuan Yuan, Binbin Zhang, Jiliang Cai, Jiaqi Zhang, Yue Lu, Shuo Qiao, Kecheng Cao, Hao Deng, Qingqing Ji
{"title":"In-plane ferroelectrics enabling reduced hysteresis in monolayer MoS2 transistors","authors":"Mingxuan Yuan,&nbsp;Binbin Zhang,&nbsp;Jiliang Cai,&nbsp;Jiaqi Zhang,&nbsp;Yue Lu,&nbsp;Shuo Qiao,&nbsp;Kecheng Cao,&nbsp;Hao Deng,&nbsp;Qingqing Ji","doi":"10.1002/cnl2.148","DOIUrl":"https://doi.org/10.1002/cnl2.148","url":null,"abstract":"<p>Two-dimensional (2D) semiconductors, such as monolayer MoS<sub>2</sub>, has emerged as a profound material platform in the post-Moore era due to their versatile applications for high-performance transistors, memories, photodetectors, neuristors, and so on. Nevertheless, the inherent defects in these atomically thin materials have given rise to significant hysteresis in their field-effect transistors (FETs), resulting in shifted threshold voltages and elevated power consumptions not only on single-device levels but also at circuitry scales. We herein report that, by vertically integrating an in-plane ferroelectric, NbOCl<sub>2</sub>, with monolayer MoS<sub>2</sub> FETs, the hysteresis in both the output and transfer curves of the latter can be greatly suppressed, which we attribute to compensated electromigration currents by the polarization currents of the 2D ferroelectric. This work opens a new avenue to hysteresis-free 2D transistors without necessitating defect-free channels, thus allowing for their use in high driving-voltage scenarios such as power electronics.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"700-709"},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling of iron and steel slag for carbon reduction and low-environment load application 回收钢铁渣,用于减碳和低环境负荷应用
Carbon Neutralization Pub Date : 2024-06-12 DOI: 10.1002/cnl2.137
Ying Xu, Enshuo Li, Chenguang Hu, Fucheng Zhang, Xianguang Meng
{"title":"Recycling of iron and steel slag for carbon reduction and low-environment load application","authors":"Ying Xu,&nbsp;Enshuo Li,&nbsp;Chenguang Hu,&nbsp;Fucheng Zhang,&nbsp;Xianguang Meng","doi":"10.1002/cnl2.137","DOIUrl":"10.1002/cnl2.137","url":null,"abstract":"<p>The high-value utilization of blast furnace slag (BFS) and steel slag (SS) as a valuable resource in the field of carbon reduction represents a green revolution, and also is an indispensable path toward breaking through resource and environmental constraints and achieving high-quality, sustainable development through solid waste utilization in the steel industry. Achieving resource recycling while harnessing the untapped latent energy of resources and exploring their carbon sequestration capabilities has become a crucial avenue for further valorization through waste utilization. BFS and SS discharged from iron-making or steel-making furnaces carry a significant amount of latent heat, especially the calcium oxide component in SS, which gives it a unique advantage in the field of comprehensive BFS and SS utilization and carbonation-based SS utilization. This article discusses the current research status of low-carbon-waste-heat utilization in the production of microcrystalline glass, cementitious materials, functional adsorbents, and other products through front-end modification of molten BFS and SS. This report also provides an overview of carbon capture by utilizing BFS and SS, offering insights into the research directions for subsequent heat recovery, online quality adjustment, high-value utilization, and carbon sequestration using BFS and SS in the steel industry.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"606-628"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling of chicken feathers 回收鸡毛
Carbon Neutralization Pub Date : 2024-06-11 DOI: 10.1002/cnl2.132
Guiyin Xu, Minghui Shan, Huijun Chen, Yunteng Cao, Ping Nie, Tengfei Xiang, Chenyang Dang, Myles G. Stapelberg, Dongyang Zhu, Meifang Zhu
{"title":"Recycling of chicken feathers","authors":"Guiyin Xu,&nbsp;Minghui Shan,&nbsp;Huijun Chen,&nbsp;Yunteng Cao,&nbsp;Ping Nie,&nbsp;Tengfei Xiang,&nbsp;Chenyang Dang,&nbsp;Myles G. Stapelberg,&nbsp;Dongyang Zhu,&nbsp;Meifang Zhu","doi":"10.1002/cnl2.132","DOIUrl":"10.1002/cnl2.132","url":null,"abstract":"<p>The extensive consumption of chicken has resulted in the emergence of a significant environmental issue in the form of chicken feather waste. As such, there is an urgent need for the development of green treatment and recycling methods for chicken feathers. Chicken feathers can serve as a type of heteroatomic doping carbon source, making them an excellent candidate for the electrode materials used in electrochemical energy devices. Furthermore, their unique structures and functional groups make them highly promising for use as adsorbents, electronics, and building materials. In this paper, we provide a summary and review of recent progress made in the use of chicken feathers for energy and environmental applications. Based on the theoretical knowledge and practical applications presented in this review, promising green recycling processes of chicken feathers can be developed. These processes can help to reduce environmental pollution and promote sustainable development.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"533-556"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial regulation engineering in anode-free rechargeable batteries 无阳极充电电池中的界面调节工程
Carbon Neutralization Pub Date : 2024-06-05 DOI: 10.1002/cnl2.144
Zhendong Hao, Liang Yan, Wenjie Li, Yuhan Zeng, Yuming Dai, Yuan Cong, Jia Ju, Baosen Zhang
{"title":"Interfacial regulation engineering in anode-free rechargeable batteries","authors":"Zhendong Hao,&nbsp;Liang Yan,&nbsp;Wenjie Li,&nbsp;Yuhan Zeng,&nbsp;Yuming Dai,&nbsp;Yuan Cong,&nbsp;Jia Ju,&nbsp;Baosen Zhang","doi":"10.1002/cnl2.144","DOIUrl":"10.1002/cnl2.144","url":null,"abstract":"<p>Anode-free rechargeable batteries (AFRBs), equipped with bare collectors at the anode, are potential electrochemical energy storage technology attributed to their simplified cell configuration, high energy density, and cost reduction. Nevertheless, issues including insufficient Coulombic efficiency as well as the formation of the dendrites restrict their practical implementation. In recent years, various strategies have been proposed to overcome the critical issues of AFRBs. Among which, interfacial properties play key roles for achieving high stable AFRBs. In this review, an overview of AFRBs is discussed in the first part. Then, the main strategies based on interfacial regulation engineering toward high-performance AFRBs are summarized including designing of current collectors, introducing of surface coating layers, modification of electrolytes, separators engineering, cathode materials regulation, and so forth. In addition, some future perspectives for developing AFRBs are proposed. This review will create new avenues on constructing stable AFRBs for advanced energy storage devices.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"629-646"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141386308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly active air electrode catalysts for Zn-air batteries: Catalytic mechanism and active center from obfuscation to clearness 用于锌-空气电池的高活性空气电极催化剂:从模糊到清晰的催化机理和活性中心
Carbon Neutralization Pub Date : 2024-06-04 DOI: 10.1002/cnl2.133
Wenhui Deng, Zirui Song, Mingjun Jing, Tianjing Wu, Wenzhang Li, Guoqiang Zou
{"title":"Highly active air electrode catalysts for Zn-air batteries: Catalytic mechanism and active center from obfuscation to clearness","authors":"Wenhui Deng,&nbsp;Zirui Song,&nbsp;Mingjun Jing,&nbsp;Tianjing Wu,&nbsp;Wenzhang Li,&nbsp;Guoqiang Zou","doi":"10.1002/cnl2.133","DOIUrl":"10.1002/cnl2.133","url":null,"abstract":"<p>Carbon-based materials have been found to accelerate the sluggish kinetic reaction and are largely subject to the overall Zn-air batteries (ZABs) property, while their full catalytic mechanism is still not excavated because of the indistinct internal structure and immature in-situ technology. Up to now, systematic methods have been utilized to study and design promising high-performance carbon-based catalysts. To resolve the real active units and catalytic mechanism, developing molecular catalyst is a significant strategy. Herein, the review will initiate to briefly introduce the working principle and composition of ZABs. An important statement is correspondingly provided about the typical structure and catalytic mechanisms for the air cathode material. It also presents the tremendous endeavors on the catalytic performance and stability of carbon-based material. Furthermore, combined with theoretical calculation, the self-defined active sites are analyzed to understand the catalytic character, where the molecular catalyst is subsequently summarized and discussed through highlighting the unambiguous and controllable structure, in the hope of surfacing the optimum catalyst. Building on the fundamental understanding of carbon-based and molecular catalysts, this review is expected to provide guidance and direction toward designing future mechanistic studies and ORR electrocatalysts.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"501-532"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene materials: Pioneering sustainable energy storage solutions MXene 材料:开创可持续能源存储解决方案
Carbon Neutralization Pub Date : 2024-05-29 DOI: 10.1002/cnl2.135
Minghua Chen, Qi Fan, Ke Chen, Eva Majkova, Qing Huang, Kun Liang
{"title":"MXene materials: Pioneering sustainable energy storage solutions","authors":"Minghua Chen,&nbsp;Qi Fan,&nbsp;Ke Chen,&nbsp;Eva Majkova,&nbsp;Qing Huang,&nbsp;Kun Liang","doi":"10.1002/cnl2.135","DOIUrl":"https://doi.org/10.1002/cnl2.135","url":null,"abstract":"<p>MXene materials have emerged as promising candidates for solving sustainable energy storage solutions due to their unique properties and versatility. MXene materials can not only be used directly as electrode materials but can also be used as functional materials to solve problems such as poor conductivity of electrode materials, severe volume expansion, dendrites, and dissolution of electrode materials. This perspective paper explores the potential applications of MXene materials for sustainable energy storage solutions, emphasizing their distinct characteristics and applications across various domains.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"493-500"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5d metal tantalum 通过加入 5d 金属钽减缓钠离子电池 O3-NaNi1/3Fe1/3Mn1/3O2 层状氧化物阴极的电压衰减
Carbon Neutralization Pub Date : 2024-05-28 DOI: 10.1002/cnl2.136
Shuai Huang, Yuanyuan Sun, Tao Yuan, Haiying Che, Qinfeng Zheng, Yixiao Zhang, Pengzhi Li, Jian Qiu, Yuepeng Pang, Junhe Yang, Zi-Feng Ma, Shiyou Zheng
{"title":"Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5d metal tantalum","authors":"Shuai Huang,&nbsp;Yuanyuan Sun,&nbsp;Tao Yuan,&nbsp;Haiying Che,&nbsp;Qinfeng Zheng,&nbsp;Yixiao Zhang,&nbsp;Pengzhi Li,&nbsp;Jian Qiu,&nbsp;Yuepeng Pang,&nbsp;Junhe Yang,&nbsp;Zi-Feng Ma,&nbsp;Shiyou Zheng","doi":"10.1002/cnl2.136","DOIUrl":"https://doi.org/10.1002/cnl2.136","url":null,"abstract":"<p>The cycling stability of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) as a commercial cathode material for sodium ion batteries (SIBs) is still a challenge. In this study, the Ni/Fe/Mn elements are replaced successfully with tantalum (Ta) in the NFM lattice, which generated additional delocalized electrons and enhanced the binding ability between the transition metal and oxygen, resulting in suppressed lattice distortion during charging and discharging. This caused significant mitigation of voltage decay and improved cycle stability within the potential range of 2.0–4.2 V. The optimized Na(Ni<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>)<sub>0.97</sub>Ta<sub>0.03</sub>O<sub>2</sub> sample achieved a reversible capacity of 162.6 mAh g<sup>−1</sup> at a current rate of 0.1 C and 73.2 mAh g<sup>−1</sup> at a high rate of 10 C. Additionally, the average charge/discharge potential retention reached 98% after 100 cycles, significantly mitigating the voltage decay. This work demonstrates a significant contribution towards the practical utilization of NFM cathodes in the SIBs energy storage field.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"584-596"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Carbon Neutralization, Volume 3, Issue 3, May 2024 封面:碳中和》,第 3 卷第 3 期,2024 年 5 月
Carbon Neutralization Pub Date : 2024-05-27 DOI: 10.1002/cnl2.149
{"title":"Front Cover: Carbon Neutralization, Volume 3, Issue 3, May 2024","authors":"","doi":"10.1002/cnl2.149","DOIUrl":"https://doi.org/10.1002/cnl2.149","url":null,"abstract":"<p><b>Front cover image:</b> Nano-engineering, including morphology design, doping, defect, heterointerface, alloying, facet, and singleatom, which can effectively modulate the electronic structure and adsorption properties of intermediates, and greatly improve the catalytic performance of zinc-based materials. Moreover, the challenges and opportunities of zinc-based catalysts for CO<sub>2</sub>RR are systematically discussed, increasing the possibility of practical application.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 3","pages":"i"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信