N-, S-Codoped Porous Carbon With Trace Single-Atom Fe for Enhanced Oxygen Reduction With Robust Poison Resistance and Efficient Rechargeable Zinc–Air Battery

Yu Sun, Lihui Wang, Haibo Li, Suyuan Zeng, Rui Li, Qingxia Yao, Hongyan Chen, Konggang Qu
{"title":"N-, S-Codoped Porous Carbon With Trace Single-Atom Fe for Enhanced Oxygen Reduction With Robust Poison Resistance and Efficient Rechargeable Zinc–Air Battery","authors":"Yu Sun,&nbsp;Lihui Wang,&nbsp;Haibo Li,&nbsp;Suyuan Zeng,&nbsp;Rui Li,&nbsp;Qingxia Yao,&nbsp;Hongyan Chen,&nbsp;Konggang Qu","doi":"10.1002/cnl2.196","DOIUrl":null,"url":null,"abstract":"<p>Pt-based electrocatalysts in oxygen reduction reaction (ORR) have severely hindered large-scale application of relevant energy technologies. Carbon composites codoped with heteroatoms and transition metals are considered the most likely alternatives to Pt, but they still have the limitation of poor tolerance to poisons. Thus, exploration of advanced electrocatalysts with superior activity and high poison resistance is of great significance in practical applications. Herein, a low-cost lysozyme was first directly used to fabricate single-atomic Fe anchored on porous N-, S-codoped carbon (Fe-PNSC) using a simple “mix-and-pyrolyze” method, which has a honeycomb-like porous structure with a large surface area of 957.69 m²/g, adequate pores of 0.71 cm³/g, and rich heteroatom doping of 4.66 at.% N, 1.9 at.% S, and 0.18 wt.% single-atomic Fe. Accordingly, Fe-PNSC displays an onset potential of 1.08 V and a half-wave potential of 0.86 V for ORR, strong stability with 96.87% current retention, and robust resistance to methanol and various poisons, all outperforming Pt/C. Additionally, the Fe-PNSC–based zinc–air battery shows a high peak power density of 122.2 mW cm<sup>−2</sup>, good specific capacity and energy density of 787 mAh g<sub>Zn</sub><sup>−1</sup> and 975.9 Wh kg<sub>Zn</sub><sup>−1</sup>, respectively, and remarkable rechargeable stability for 300 h, superior to Pt/C-based ones.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pt-based electrocatalysts in oxygen reduction reaction (ORR) have severely hindered large-scale application of relevant energy technologies. Carbon composites codoped with heteroatoms and transition metals are considered the most likely alternatives to Pt, but they still have the limitation of poor tolerance to poisons. Thus, exploration of advanced electrocatalysts with superior activity and high poison resistance is of great significance in practical applications. Herein, a low-cost lysozyme was first directly used to fabricate single-atomic Fe anchored on porous N-, S-codoped carbon (Fe-PNSC) using a simple “mix-and-pyrolyze” method, which has a honeycomb-like porous structure with a large surface area of 957.69 m²/g, adequate pores of 0.71 cm³/g, and rich heteroatom doping of 4.66 at.% N, 1.9 at.% S, and 0.18 wt.% single-atomic Fe. Accordingly, Fe-PNSC displays an onset potential of 1.08 V and a half-wave potential of 0.86 V for ORR, strong stability with 96.87% current retention, and robust resistance to methanol and various poisons, all outperforming Pt/C. Additionally, the Fe-PNSC–based zinc–air battery shows a high peak power density of 122.2 mW cm−2, good specific capacity and energy density of 787 mAh gZn−1 and 975.9 Wh kgZn−1, respectively, and remarkable rechargeable stability for 300 h, superior to Pt/C-based ones.

Abstract Image

N, s共掺杂多孔碳与痕量单原子铁用于增强氧还原,具有强大的抗毒性和高效的可充电锌空气电池
pt基氧还原反应电催化剂严重阻碍了相关能源技术的大规模应用。杂原子与过渡金属共掺杂的碳复合材料被认为是最有可能替代铂的材料,但其仍存在耐毒性差的局限性。因此,探索具有优良活性和高耐毒性能的先进电催化剂在实际应用中具有重要意义。本文首次利用低成本溶菌酶,采用简单的“混合-热解”方法制备了单原子铁锚定在多孔N, s共掺杂碳(Fe- pnsc)上,该材料具有蜂窝状多孔结构,表面积为957.69 m²/g,孔洞为0.71 cm³/g,丰富杂原子掺杂量为4.66 at。% N, 1.9 at。% S, 0.18 wt。%单原子铁。结果表明,Fe-PNSC的起始电位为1.08 V, ORR半波电位为0.86 V,稳定性强,电流保留率为96.87%,耐甲醇和各种毒物,均优于Pt/C。此外,fe - pnsc基锌空气电池的峰值功率密度为122.2 mW cm - 2,具有良好的比容量和能量密度,分别为787 mAh gZn - 1和975.9 Wh kgZn - 1, 300 h的可充电稳定性优于Pt/ c基电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信