Imaging the Electrochemical Processes by Single-Molecule Fluorescence Microscopy

Fei Huang, Dezheng Zhang, Xuanhao Mei, Bowei Zhang, Jinpeng Bao, Ping Song, Ce Han, Weilin Xu
{"title":"Imaging the Electrochemical Processes by Single-Molecule Fluorescence Microscopy","authors":"Fei Huang,&nbsp;Dezheng Zhang,&nbsp;Xuanhao Mei,&nbsp;Bowei Zhang,&nbsp;Jinpeng Bao,&nbsp;Ping Song,&nbsp;Ce Han,&nbsp;Weilin Xu","doi":"10.1002/cnl2.70002","DOIUrl":null,"url":null,"abstract":"<p>To advance the development of novel and efficient electrochemical systems, it is crucial to dynamically image electrochemical reaction processes in real-time at the single-particle or single-molecule level. Single-molecule fluorescence microscopy has emerged as a powerful tool for in situ imaging of dynamic reaction processes, which is extensively utilized in the field of electrochemical reactions. In this perspective, we provide a concise summary of the recent applications of single-molecule fluorescence microscopy and super-resolution fluorescence microscopy within energy electrochemistry. This paper offers insights and evidence regarding electron transfer, surface adsorption, and desorption of reactants, as well as the kinetic processes and mechanisms involved in energy-related electrochemical reactions. Finally, several remaining challenges are outlined based on the vision for the expanded application of single-molecule fluorescence microscopy across a broader spectrum of energy-related fields, including carbon dioxide reduction, methanol electrooxidation, nitric acid electroreduction, furfural electrooxidation reaction, etc.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To advance the development of novel and efficient electrochemical systems, it is crucial to dynamically image electrochemical reaction processes in real-time at the single-particle or single-molecule level. Single-molecule fluorescence microscopy has emerged as a powerful tool for in situ imaging of dynamic reaction processes, which is extensively utilized in the field of electrochemical reactions. In this perspective, we provide a concise summary of the recent applications of single-molecule fluorescence microscopy and super-resolution fluorescence microscopy within energy electrochemistry. This paper offers insights and evidence regarding electron transfer, surface adsorption, and desorption of reactants, as well as the kinetic processes and mechanisms involved in energy-related electrochemical reactions. Finally, several remaining challenges are outlined based on the vision for the expanded application of single-molecule fluorescence microscopy across a broader spectrum of energy-related fields, including carbon dioxide reduction, methanol electrooxidation, nitric acid electroreduction, furfural electrooxidation reaction, etc.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信