{"title":"Imaging the Electrochemical Processes by Single-Molecule Fluorescence Microscopy","authors":"Fei Huang, Dezheng Zhang, Xuanhao Mei, Bowei Zhang, Jinpeng Bao, Ping Song, Ce Han, Weilin Xu","doi":"10.1002/cnl2.70002","DOIUrl":null,"url":null,"abstract":"<p>To advance the development of novel and efficient electrochemical systems, it is crucial to dynamically image electrochemical reaction processes in real-time at the single-particle or single-molecule level. Single-molecule fluorescence microscopy has emerged as a powerful tool for in situ imaging of dynamic reaction processes, which is extensively utilized in the field of electrochemical reactions. In this perspective, we provide a concise summary of the recent applications of single-molecule fluorescence microscopy and super-resolution fluorescence microscopy within energy electrochemistry. This paper offers insights and evidence regarding electron transfer, surface adsorption, and desorption of reactants, as well as the kinetic processes and mechanisms involved in energy-related electrochemical reactions. Finally, several remaining challenges are outlined based on the vision for the expanded application of single-molecule fluorescence microscopy across a broader spectrum of energy-related fields, including carbon dioxide reduction, methanol electrooxidation, nitric acid electroreduction, furfural electrooxidation reaction, etc.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To advance the development of novel and efficient electrochemical systems, it is crucial to dynamically image electrochemical reaction processes in real-time at the single-particle or single-molecule level. Single-molecule fluorescence microscopy has emerged as a powerful tool for in situ imaging of dynamic reaction processes, which is extensively utilized in the field of electrochemical reactions. In this perspective, we provide a concise summary of the recent applications of single-molecule fluorescence microscopy and super-resolution fluorescence microscopy within energy electrochemistry. This paper offers insights and evidence regarding electron transfer, surface adsorption, and desorption of reactants, as well as the kinetic processes and mechanisms involved in energy-related electrochemical reactions. Finally, several remaining challenges are outlined based on the vision for the expanded application of single-molecule fluorescence microscopy across a broader spectrum of energy-related fields, including carbon dioxide reduction, methanol electrooxidation, nitric acid electroreduction, furfural electrooxidation reaction, etc.