Advanced Characterization Techniques for Probing Redox Reaction Mechanisms in High-Performance Li–S Batteries

Shilin Chen, Chengwei Ma, Zhongming Li, Jiangqi Zhou
{"title":"Advanced Characterization Techniques for Probing Redox Reaction Mechanisms in High-Performance Li–S Batteries","authors":"Shilin Chen,&nbsp;Chengwei Ma,&nbsp;Zhongming Li,&nbsp;Jiangqi Zhou","doi":"10.1002/cnl2.70003","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance energy storage systems requires several key attributes, including high energy and power density, cost-effectiveness, safety, and environmental sustainability. Among the various potential technologies, lithium–sulfur batteries stand out as a promising contender for future energy storage solutions due to their exceptional theoretical specific energy density (2600 Wh kg⁻¹) and relatively high specific capacity (1675 mAh g⁻¹). However, the commercialization of lithium–sulfur batteries faces significant challenges, such as low sulfur loading, rapid capacity degradation, and poor cycling stability. At the heart of these issues lies a limited understanding of the complex conversion chemistry involved in lithium–sulfur batteries. In recent years, significant progress has been made in elucidating these reaction mechanisms, thanks to the use of both ex situ and in situ characterization techniques. Methods such as optical spectroscopy, time-of-flight secondary ion mass spectrometry, synchrotron X-ray, and neural network analysis have demonstrated great potential in uncovering the redox processes of lithium polysulfides and their underlying mechanisms, significantly advancing research in lithium–sulfur battery systems. This review focuses on the major advancements in lithium–sulfur batteries research, particularly in the study of electrocatalytic mechanisms using emerging characterization techniques. We discuss key aspects of accurately revealing the mechanisms of lithium–sulfur batteries through these advanced diagnostic methods, as well as the main challenges these techniques face. Finally, we explore the future prospects of lithium–sulfur battery commercialization.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance energy storage systems requires several key attributes, including high energy and power density, cost-effectiveness, safety, and environmental sustainability. Among the various potential technologies, lithium–sulfur batteries stand out as a promising contender for future energy storage solutions due to their exceptional theoretical specific energy density (2600 Wh kg⁻¹) and relatively high specific capacity (1675 mAh g⁻¹). However, the commercialization of lithium–sulfur batteries faces significant challenges, such as low sulfur loading, rapid capacity degradation, and poor cycling stability. At the heart of these issues lies a limited understanding of the complex conversion chemistry involved in lithium–sulfur batteries. In recent years, significant progress has been made in elucidating these reaction mechanisms, thanks to the use of both ex situ and in situ characterization techniques. Methods such as optical spectroscopy, time-of-flight secondary ion mass spectrometry, synchrotron X-ray, and neural network analysis have demonstrated great potential in uncovering the redox processes of lithium polysulfides and their underlying mechanisms, significantly advancing research in lithium–sulfur battery systems. This review focuses on the major advancements in lithium–sulfur batteries research, particularly in the study of electrocatalytic mechanisms using emerging characterization techniques. We discuss key aspects of accurately revealing the mechanisms of lithium–sulfur batteries through these advanced diagnostic methods, as well as the main challenges these techniques face. Finally, we explore the future prospects of lithium–sulfur battery commercialization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信