MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors

IF 12
Yi Zhang, Can Tang, Shun Lu, Yi Zeng, Qingsong Hua, Yongxing Zhang
{"title":"MnO2 Nanoflower Intercalation on Ti3C2Tx MXene With Expanded Interlayer Spacing for Flexible Asymmetric Supercapacitors","authors":"Yi Zhang,&nbsp;Can Tang,&nbsp;Shun Lu,&nbsp;Yi Zeng,&nbsp;Qingsong Hua,&nbsp;Yongxing Zhang","doi":"10.1002/cnl2.70006","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO<sub>2</sub>@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO<sub>2</sub> combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO<sub>2</sub> increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO<sub>2</sub>@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g⁻¹), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO<sub>2</sub>@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 3","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors are promising energy storage solutions known for their high-power density, fast charge–discharge rates, and long cycle life. Recently, Ti3C2Tx MXene, a member of the 2D MXene family, has emerged as a potential electrode material for supercapacitors. However, its limited interlayer spacing hinders broader applications. In this study, we introduce a novel δ-MnO2@MXene heterostructure with expanded interlayer spacing, synthesized using a hydrothermal approach. This design enhances charge transfer efficiency and improves the contact between the components, significantly boosting supercapacitor performance. The unique nanoflower-like structure of δ-MnO2 combined with MXene substantially improves capacitance retention and ion diffusion, surpassing the performance of each individual material. The sponge-like architecture of δ-MnO2 increases accessible charge storage sites and widens the interlayer gaps in MXene, facilitating better ion migration. As a result, the δ-MnO2@MXene electrode exhibits a capacitance 54 times greater than MXene alone (2.0 F g⁻¹), an impressive rate capability of 67.3% (after a 20-fold increase in current density), and exceptional cycling stability, maintaining 93% of its capacity after 10,000 cycles. This novel δ-MnO2@MXene heterostructure significantly enhances electrochemical performance, making it a promising candidate for advanced energy storage applications.

Abstract Image

柔性非对称超级电容器Ti3C2Tx MXene上扩展层间距的MnO2纳米花嵌入
超级电容器以功率密度高、充放电速度快和循环寿命长而闻名,是一种前景广阔的储能解决方案。最近,Ti3C2Tx MXene(二维 MXene 家族的成员)成为超级电容器的潜在电极材料。然而,其有限的层间距阻碍了其更广泛的应用。在本研究中,我们采用水热法合成了一种新型δ-MnO2@MXene 异质结构,它具有更宽的层间距。这种设计提高了电荷转移效率,改善了各组分之间的接触,从而显著提高了超级电容器的性能。δ-MnO2独特的纳米花状结构与MXene相结合,大大提高了电容保持率和离子扩散率,超越了每种材料的性能。δ-MnO2 的海绵状结构增加了可访问的电荷存储位点,并拓宽了 MXene 的层间间隙,有利于离子更好地迁移。因此,δ-MnO2@MXene 电极的电容是单独 MXene 电极的 54 倍(2.0 F g-¹),速率能力高达 67.3%(电流密度增加 20 倍后),并且具有优异的循环稳定性,在循环 10,000 次后仍能保持 93% 的容量。这种新型 δ-MnO2@MXene 异质结构显著提高了电化学性能,使其成为先进储能应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信