Minenhle PD. Sibisi , Albertus K. Basson , Zuzingcebo G. Ntombela , Rajasekhar V.S.R. Pullabhotla
{"title":"Eco-friendly synthesis and optimization of CuNPs using a non-pathogenic bioflocculant from Kytococcus sedentarius","authors":"Minenhle PD. Sibisi , Albertus K. Basson , Zuzingcebo G. Ntombela , Rajasekhar V.S.R. Pullabhotla","doi":"10.1016/j.biotno.2025.02.002","DOIUrl":"10.1016/j.biotno.2025.02.002","url":null,"abstract":"<div><div>Nanotechnology is being used to solve a variety of environmental issues, including wastewater treatment. In the present study, a rapid eco-friendly method was applied to biosynthesize and optimize copper nanoparticles (CuNPs) from <em>Kytococcus sedentarius</em>. The CuNPs characteristics were identified using X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier Transform infrared (FT-IR), Transmission electron microscope (TEM), Thermogravimetric analysis (TGA) and UV–Vis spectroscope (UV–Vis). To determine the maximum metabolic yield, the optimum dosage size, pH, temperature, salinity and cations were evaluated. The antibacterial activity of the samples against Gram-negative and Gram-positive isolates was assessed using the Kirby-Bauer Disk Diffusion Test. 28.3 nm was the average crystallite size of CuNPs revealed through XRD analysis. The SEM and TEM analysis depicted the CuNPs to be agglomerated in various sizes and forms. Elements such as Carbon (25.23 % wt), Cu (23.37 % Wt) and Oxygen (20.13 % Wt) were found in CuNPs. The nanoparticles had functional groups and a Cu–O bond at 559 cm <sup>−1</sup>. The CuNPs retained 70 % of its weight whereas the bioflocculant retained only 50 % when heated at a range of 100 °C–900 °C. The samples exhibited a UV–Vis spectra between 250 and 300 nm, at a range of 200–1400 nm. The flocculating effeciency of CuNPs was optimal at 0.2 mg/mL (92 %) and cation independent (92 %). pH 7 was the peak maximum as 98 % of the flocculating activity was obtained. The CuNPs were thermally stable than the bioflocculant as over 80 % of its flocculating activity was retained even at high temperatures (121 °C). The CuNPs were not affected by the increase in NaCl concentration with the highest NaCl concentration (35 g/L) having the highest flocculating activity of 90 %. CuNPs exhibited antimicrobial activity against both bacterial strains, with greater susceptibility observed in <em>S. aureus</em> as compared to the bioflocculant. Thus, CuNPs have a potential to be applied in wastewater treatment to replace traditional flocculants.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 89-99"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrative analysis of candidate MicroRNAs and gene targets for OSA management using in silico and in-vitro approach","authors":"Gaganjyot Kaur Bakshi , Sartaj Khurana , Shambhavee Srivastav , Rohit Kumar , Mukesh Chourasia , Sudeep Bose","doi":"10.1016/j.biotno.2025.01.003","DOIUrl":"10.1016/j.biotno.2025.01.003","url":null,"abstract":"<div><div>MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including sleep disorders. The aim of this study is to address the involvement of miRNAs (miR-21 and miR-29) in the pathophysiology of obstructive sleep apnea (OSA). In this study we have done integrated analysis of miRNAs with their potential gene targets as a strategy for management of OSA.</div></div><div><h3>Methods</h3><div>miRNA expression levels were quantified in healthy control group and obese vs. Non-obese OSA subjects by Quantitative real-time PCR. In-silico analysis of interplay of miRNAs with potential gene targets was done using Schrödinger Release 2023-1.</div></div><div><h3>Results</h3><div>The real time expression analysis revealed a differential expression pattern in miRNAs indicating down-regulation of miR-21 in obese OSA while miR-29 showed upregulation as compared to non-obese OSA and healthy subjects with p values of ≤0.01 and <0.0001respectively. A trend was observed where target genes TGFBR2, NAMPT, and NPPB were significantly increased with p-value of ≤0.0001 and TGFBR3 and INSIG2 showed decreasing trend with p-value of ≤0.0001 between obese and non-obese OSA respectively. MD simulation analysis provided valuable information regarding the stability, flexibility, compactness and solvent exposure of the complexes over time.</div></div><div><h3>Conclusion</h3><div>miR-21 and miR-29 possesses differential expressions in obese OSA subject and exihbits strong molecular interactions with potential target genes, such as TGFBR2, NPPB, NAMPT and INSIG2. Identifying the miRNAs, genes and pathways associated with OSA can help to expand our understanding of the risk factors for the disease as well as provide new avenues for potential treatment.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 79-88"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143132794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agroinfiltration-mediated transient assay for rapid evaluation of constructs in pigeonpea","authors":"Kalenahalli Yogendra, Harika Gadeela, Koppula Nithya Sree, Wricha Tyagi","doi":"10.1016/j.biotno.2025.02.005","DOIUrl":"10.1016/j.biotno.2025.02.005","url":null,"abstract":"<div><div>The process of generating stable transformants is time-consuming, labor-intensive, and genotype-dependent. In contrast, transient gene expression techniques, such as agroinfiltration, offer a rapid assessment of gene function and expression. Agroinfiltration, widely employed for studying gene function, has been extensively applied in leaf tissues of <em>Nicotiana benthamiana</em> and various other plant species. Despite its broad utility in various plants, to our knowledge, no prior investigation has been reported in pigeonpea. In this study, we developed an agroinfiltration method for transiently expressing a green fluorescent protein (<em>mGFP5</em>) reporter gene in four pigeonpea genotypes using syringe infiltration at the seedling stage under greenhouse conditions. The expression of the reporter gene <em>mGFP5</em> was assessed at 72-, 96-, and 120 h post-infiltration (hpi). Additionally, we assessed the effect of morphogenic genes, specifically <em>growth-regulating factor 4</em> (<em>GRF4</em>) and <em>GRF-interacting factor 1</em> (<em>GIF1</em>), from both rice and pigeonpea on the expression of <em>mGFP5</em> in four pigeonpea genotypes. Our findings demonstrate that <em>OsGRF4-GIF1</em> led to enhanced <em>mGFP5</em> expression compared to <em>CcGRF4-GIF1</em> in four diverse pigeonpea genotypes. Fluorescence could be detected till 120 hpi. Furthermore, PCR, RT-PCR, and fluorescence quantification confirmed the presence and expression of <em>mGFP5</em> at 72 hpi. Our results highlight the efficacy of agroinfiltration in quickly evaluating candidate genes in four genetically diverse pigeonpea genotypes, thereby reducing the time required for the initial assessment of constructs suitable for diverse molecular biology analyses.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 117-125"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Straightforward MALDI-TOF MS based screening approach for selection of recombinant protein-expressing E. coli","authors":"I.N. Kravtsov , A.I. Solovyev , E.A. Potemkina , A.V. Kartashova , M.A. Dmitrieva , K.V. Danilova , I.L. Tutykhina , N.B. Polyakov , V.D. Desinov , D.A. Egorova , A.L. Gintsburg","doi":"10.1016/j.biotno.2025.02.004","DOIUrl":"10.1016/j.biotno.2025.02.004","url":null,"abstract":"<div><div>Recombinant protein production is a milestone of modern biotechnology, drug development and scientific research. When obtaining recombinant protein producers, differences in expression levels among clones necessitate screening. Traditional widely used methods include protein electrophoresis and western blot hybridization. This protocol provides high-throughput advantages by eliminating time-consuming steps inherent to traditional methods, such as cell lysis, protein extraction, purification, antibody-based detection, and gel-based analysis. MALDI-TOF MS represents a simple, rapid and cost-effective method for bacterial species identification through protein fingerprint signature in clinical diagnostics, but not practically integrated into biotechnological workflow. This study proposes a fast and easy method for screening <em>E. coli</em> clones producing recombinant proteins with MALDI-TOF MS. The proposed method demonstrated efficiency in screening of <em>E. coli</em> producing several recombinant proteins with different properties: sfGFP; bacterial DNA binding proteins IHF<em>α</em>, IHF<em>β</em>, HU; bacteriophage protein GP46 and camelid VHH antibody fragments.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 100-105"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143551780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eman R.A. Soliman , Ayman Nada , Hiroyuki Ishii , Ahmed M.R. Fathelbeb
{"title":"Modeling and simulation of soft bio-mimetic fingers with a novel soft thumb design for bionic hand applications using ANN","authors":"Eman R.A. Soliman , Ayman Nada , Hiroyuki Ishii , Ahmed M.R. Fathelbeb","doi":"10.1016/j.biotno.2025.05.002","DOIUrl":"10.1016/j.biotno.2025.05.002","url":null,"abstract":"<div><div>The paper presents a novel design for a soft bio-mimetic finger and soft thumb structure for bionic hand applications. It introduces an anthropomorphic pneumatic flexible finger system using a PneuNets framework to enhance flexibility and maneuverability. The research investigates the influence of geometric variations (wall thickness, chamber number, and spacing) on finger deformation, demonstrating that reduced wall thickness and augmented chambers substantially improve flexibility. A key innovation is the soft thumb design that accurately replicates the complex movements of the Carpometacarpal (CMC) joint, enabling natural opposition and dexterity. Eight models were developed for four fingers and two models for the thumb. Simulation results indicate that models with thinner walls (2 mm) achieve bending angles exceeding 80° at 120 KPa, whereas 3 mm models remain below 50°. Moreover, increasing the number of chambers enhances deformation, with each added chamber contributing approximately 41 % more flexibility. For the thumb models, we successfully mapped the motion ranges and accurately mimicked the base joint, enabling natural opposition and dexterity. Furthermore, the paper also integrates Artificial Neural Networks (ANNs) to model forward kinematics, improving the estimation of bending angles and end-tip positions, which enhances the overall adaptability and control of the system.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 164-176"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144166709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell-free protein synthesis platforms for accelerating drug discovery","authors":"Filippo Caschera","doi":"10.1016/j.biotno.2025.02.001","DOIUrl":"10.1016/j.biotno.2025.02.001","url":null,"abstract":"<div><div>Cell-free protein synthesis is a platform for streamlined production of macromolecules. Recently, several proteins with pharmaceutical relevance were synthesised and characterised. Off-the-shelf reagents and parallelised experimentation have enabled the exploration of many different conditions for <em>in vitro</em> protein synthesis and engineering. Herein is described how machine learning algorithms were applied for protein yield maximisation as well as for protein engineering and <em>de novo</em> design. Cell-free protein synthesis provides the biotechnological platform to unlock the power and benefit of AI/ML for drug discovery and improve human health.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 126-132"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mevalonate secretion is not mediated by a singular non-essential transporter in Saccharomyces cerevisiae","authors":"Scott A. Wegner , José L. Avalos","doi":"10.1016/j.biotno.2024.10.001","DOIUrl":"10.1016/j.biotno.2024.10.001","url":null,"abstract":"<div><div>Isoprenoids are highly valued targets for microbial chemical production, allowing the creation of fragrances, biofuels, and pharmaceuticals from renewable carbon feedstocks. To increase isoprenoid production, previous efforts have manipulated pyruvate dehydrogenase (PDH) bypass pathway flux to increase cytosolic acetyl-coA; however, this results in mevalonate secretion and does not necessarily translate into higher isoprenoid production. Identification and disruption of the transporter mediating mevalonate secretion would allow us to determine whether increasing PDH bypass activity in the absence of secretion improves conversion of mevalonate into downstream isoprenoids. Attempted identification of the mevalonate transporter was accomplished using a pooled CRISPR library targeting all nonessential transporters and two different screening methods. Using a high throughput screen, based on growth of a mevalonate auxotrophic <em>Escherichia coli</em> strain, it was found that <em>ZRT3</em> disruption largely abolished accumulation of extracellular mevalonate. However, disruption of <em>ZRT3</em> was found to lower overall mevalonate pathway activity, rather than prevent secretion, indicating a previously unreported interaction between zinc availability and the mevalonate pathway. In a second screen, significant differences in <em>PDR5/15</em> and <em>QDR1/2</em> library representation were found between wild-type and mevalonate secreting <em>Saccharomyces cerevisiae</em> strains. However, no single deletion (or selected pair of double deletions) abolishes mevalonate secretion, indicating that this process appears to be mediated through multiple redundant transporters.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 140-150"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahalakshmi Devaraji, Punniyakoti V. Thanikachalam, Karthikeyan Elumalai
{"title":"The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review","authors":"Mahalakshmi Devaraji, Punniyakoti V. Thanikachalam, Karthikeyan Elumalai","doi":"10.1016/j.biotno.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.biotno.2024.06.001","url":null,"abstract":"<div><p>Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 80-99"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000102/pdfft?md5=1bd90f034c802d80d953cb65ac2eab2a&pid=1-s2.0-S2665906924000102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"aXonica: A support package for MRI based Neuroimaging","authors":"Bilal Wajid , Momina Jamil , Fahim Gohar Awan , Faria Anwar , Ali Anwar","doi":"10.1016/j.biotno.2024.08.001","DOIUrl":"10.1016/j.biotno.2024.08.001","url":null,"abstract":"<div><p>Magnetic Resonance Imaging (MRI) assists in studying the nervous system. MRI scans undergo significant processing before presenting the final images to medical practitioners. These processes are executed with ease due to excellent software pipelines. However, establishing software workstations is non-trivial and requires researchers in life sciences to be comfortable in downloading, installing, and scripting software that is non-user-friendly and may lack basic GUI. As researchers struggle with these skills, there is a dire need to develop software packages that can automatically install software pipelines speeding up building software workstations and laboratories. Previous solutions include NeuroDebian, BIDS Apps, Flywheel, QMENTA, Boutiques, Brainlife and Neurodesk. Overall, all these solutions complement each other. NeuroDebian covers neuroscience and has a wider scope, providing only 51 tools for MRI. Whereas, BIDS Apps is committed to the BIDS format, covering only 45 software related to MRI. Boutiques is more flexible, facilitating its pipelines to be easily installed as separate containers, validated, published, and executed. Whereas, both Flywheel and Qmenta are propriety, leaving four for users looking for ‘free for use’ tools, i.e., NeuroDebian, Brainlife, Neurodesk, and BIDS Apps. This paper presents an extensive survey of 317 tools published in MRI-based neuroimaging in the last ten years, along with ‘aXonica,’ an MRI-based neuroimaging support package that is unbiased towards any formatting standards and provides 130 applications, more than that of NeuroDebian (51), BIDS App (45), Flywheel (70), and Neurodesk (85). Using a technology stack that employs GUI as the front-end and shell scripted back-end, aXonica provides (i) 130 tools that span the entire MRI-based neuroimaging analysis, and allow the user to (ii) select the software of their choice, (iii) automatically resolve individual dependencies and (iv) installs them. Hence, aXonica can serve as an important resource for researchers and teachers working in the field of MRI-based Neuroimaging to (a) develop software workstations, and/or (b) install newer tools in their existing workstations.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 120-136"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000126/pdfft?md5=586029896db2ec4af16780650f840978&pid=1-s2.0-S2665906924000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gamal M. El-Sherbiny , Eman E. Farghal , Mohamed K. Lila , Yousseria M. Shetaia , S.S. Mohamed , Marwa MF. Elswify
{"title":"Antibiotic susceptibility and virulence factors of bacterial species among cancer patients","authors":"Gamal M. El-Sherbiny , Eman E. Farghal , Mohamed K. Lila , Yousseria M. Shetaia , S.S. Mohamed , Marwa MF. Elswify","doi":"10.1016/j.biotno.2024.02.002","DOIUrl":"10.1016/j.biotno.2024.02.002","url":null,"abstract":"<div><p>Antibiotic resistance is one of the most significant challenges of the 20-s century, and the misuse of antibiotics is a driver of antimicrobial resistance. This study aimed to assess the prevalence of multidrug resistance, and detection of its produce virulence factors, including extended-spectrum β-lactamases (ESβLs), biofilm, and siderophores produced by bacterial species isolated from cancer patients. One hundred and seventy-five Gram-negative bacterial isolates were isolated from different samples collected from cancer patients admitted to the National Cancer Institute (NCI), Cairo, Egypt, and processed by standard microbiological methods. One hundred and forty-three bacterial isolates were recovered from adult patients, and 32 were recovered from children. <em>Escherichia coli</em> showed the highest frequency (36%), followed by <em>Klebsiella pneumonia</em> (30.85%), <em>Acinetobacter baummannii</em> (14.28%), and <em>Pseudomonas</em> sp. (9.14%). Antibiotic profiles revealed that bacterial isolates are highly resistant to the most commonly available antibiotics. Amikacin and gentamicin were the most effective antibiotics against isolated Gram-negative bacteria. Moreover, the vast majority of bacterial stains produce virulence factors, including EsβLs, biofilm, and siderophores. <em>E. coli</em> isolates produced ESβLs with rates of 25.28%, <em>Klebsiella pneumonia</em> (11.0%), and <em>Pseudomonas</em> sp. (25.0%). Among these collected bacterial isolates, 132 (75.4%) have the ability to form a biofilm to different degrees. Also, the majority of the bacteria isolates generated siderophores, with 133 (75.94%). This study revealed that a significant distribution of multidrug-resistant pathogenic bacteria may increase the burden on healthcare to prevent infections in cancer patients.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 27-32"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000059/pdfft?md5=a4cbb8c1c8e233851aa0e7c0fcc49313&pid=1-s2.0-S2665906924000059-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}