利用静止Kytococcus seentarius的非致病性生物絮凝剂生态合成和优化CuNPs

Minenhle PD. Sibisi , Albertus K. Basson , Zuzingcebo G. Ntombela , Rajasekhar V.S.R. Pullabhotla
{"title":"利用静止Kytococcus seentarius的非致病性生物絮凝剂生态合成和优化CuNPs","authors":"Minenhle PD. Sibisi ,&nbsp;Albertus K. Basson ,&nbsp;Zuzingcebo G. Ntombela ,&nbsp;Rajasekhar V.S.R. Pullabhotla","doi":"10.1016/j.biotno.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Nanotechnology is being used to solve a variety of environmental issues, including wastewater treatment. In the present study, a rapid eco-friendly method was applied to biosynthesize and optimize copper nanoparticles (CuNPs) from <em>Kytococcus sedentarius</em>. The CuNPs characteristics were identified using X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier Transform infrared (FT-IR), Transmission electron microscope (TEM), Thermogravimetric analysis (TGA) and UV–Vis spectroscope (UV–Vis). To determine the maximum metabolic yield, the optimum dosage size, pH, temperature, salinity and cations were evaluated. The antibacterial activity of the samples against Gram-negative and Gram-positive isolates was assessed using the Kirby-Bauer Disk Diffusion Test. 28.3 nm was the average crystallite size of CuNPs revealed through XRD analysis. The SEM and TEM analysis depicted the CuNPs to be agglomerated in various sizes and forms. Elements such as Carbon (25.23 % wt), Cu (23.37 % Wt) and Oxygen (20.13 % Wt) were found in CuNPs. The nanoparticles had functional groups and a Cu–O bond at 559 cm <sup>−1</sup>. The CuNPs retained 70 % of its weight whereas the bioflocculant retained only 50 % when heated at a range of 100 °C–900 °C. The samples exhibited a UV–Vis spectra between 250 and 300 nm, at a range of 200–1400 nm. The flocculating effeciency of CuNPs was optimal at 0.2 mg/mL (92 %) and cation independent (92 %). pH 7 was the peak maximum as 98 % of the flocculating activity was obtained. The CuNPs were thermally stable than the bioflocculant as over 80 % of its flocculating activity was retained even at high temperatures (121 °C). The CuNPs were not affected by the increase in NaCl concentration with the highest NaCl concentration (35 g/L) having the highest flocculating activity of 90 %. CuNPs exhibited antimicrobial activity against both bacterial strains, with greater susceptibility observed in <em>S. aureus</em> as compared to the bioflocculant. Thus, CuNPs have a potential to be applied in wastewater treatment to replace traditional flocculants.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 89-99"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly synthesis and optimization of CuNPs using a non-pathogenic bioflocculant from Kytococcus sedentarius\",\"authors\":\"Minenhle PD. Sibisi ,&nbsp;Albertus K. Basson ,&nbsp;Zuzingcebo G. Ntombela ,&nbsp;Rajasekhar V.S.R. Pullabhotla\",\"doi\":\"10.1016/j.biotno.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanotechnology is being used to solve a variety of environmental issues, including wastewater treatment. In the present study, a rapid eco-friendly method was applied to biosynthesize and optimize copper nanoparticles (CuNPs) from <em>Kytococcus sedentarius</em>. The CuNPs characteristics were identified using X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier Transform infrared (FT-IR), Transmission electron microscope (TEM), Thermogravimetric analysis (TGA) and UV–Vis spectroscope (UV–Vis). To determine the maximum metabolic yield, the optimum dosage size, pH, temperature, salinity and cations were evaluated. The antibacterial activity of the samples against Gram-negative and Gram-positive isolates was assessed using the Kirby-Bauer Disk Diffusion Test. 28.3 nm was the average crystallite size of CuNPs revealed through XRD analysis. The SEM and TEM analysis depicted the CuNPs to be agglomerated in various sizes and forms. Elements such as Carbon (25.23 % wt), Cu (23.37 % Wt) and Oxygen (20.13 % Wt) were found in CuNPs. The nanoparticles had functional groups and a Cu–O bond at 559 cm <sup>−1</sup>. The CuNPs retained 70 % of its weight whereas the bioflocculant retained only 50 % when heated at a range of 100 °C–900 °C. The samples exhibited a UV–Vis spectra between 250 and 300 nm, at a range of 200–1400 nm. The flocculating effeciency of CuNPs was optimal at 0.2 mg/mL (92 %) and cation independent (92 %). pH 7 was the peak maximum as 98 % of the flocculating activity was obtained. The CuNPs were thermally stable than the bioflocculant as over 80 % of its flocculating activity was retained even at high temperatures (121 °C). The CuNPs were not affected by the increase in NaCl concentration with the highest NaCl concentration (35 g/L) having the highest flocculating activity of 90 %. CuNPs exhibited antimicrobial activity against both bacterial strains, with greater susceptibility observed in <em>S. aureus</em> as compared to the bioflocculant. Thus, CuNPs have a potential to be applied in wastewater treatment to replace traditional flocculants.</div></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"6 \",\"pages\":\"Pages 89-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906925000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906925000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术正被用于解决各种环境问题,包括废水处理。本研究采用一种快速、生态友好的方法,从静止Kytococcus sedentarius中生物合成并优化铜纳米颗粒(cups)。利用x射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外(FT-IR)、透射电子显微镜(TEM)、热重分析(TGA)和紫外可见光谱(UV-Vis)对CuNPs进行了表征。为了确定最大代谢产率,对最佳投加量、pH、温度、盐度和阳离子进行了评价。采用Kirby-Bauer圆盘扩散试验(Disk Diffusion Test)对两种菌株进行抑菌活性测定,XRD分析显示,CuNPs的平均晶粒尺寸为28.3 nm。SEM和TEM分析显示了不同大小和形式的聚块。碳(25.23% wt)、铜(23.37% wt)和氧(20.13% wt)等元素在CuNPs中被发现。纳米颗粒在559 cm−1处具有官能团和Cu-O键。在100°C - 900°C范围内加热时,CuNPs保留了70%的重量,而生物絮凝剂仅保留了50%。样品的紫外可见光谱范围为250 ~ 300 nm, 200 ~ 1400 nm。当浓度为0.2 mg/mL时,其絮凝效果最佳(92%),且与阳离子无关(92%)。pH为7时絮凝活性最高,絮凝活性达到98%。与生物絮凝剂相比,CuNPs具有较好的热稳定性,即使在高温(121℃)下仍能保持80%以上的絮凝活性。NaCl浓度的增加对CuNPs的絮凝活性没有影响,当NaCl浓度达到35 g/L时,其絮凝活性最高,达90%。与生物絮凝剂相比,CuNPs对金黄色葡萄球菌具有更大的敏感性。因此,在污水处理中,CuNPs具有替代传统絮凝剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-friendly synthesis and optimization of CuNPs using a non-pathogenic bioflocculant from Kytococcus sedentarius
Nanotechnology is being used to solve a variety of environmental issues, including wastewater treatment. In the present study, a rapid eco-friendly method was applied to biosynthesize and optimize copper nanoparticles (CuNPs) from Kytococcus sedentarius. The CuNPs characteristics were identified using X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier Transform infrared (FT-IR), Transmission electron microscope (TEM), Thermogravimetric analysis (TGA) and UV–Vis spectroscope (UV–Vis). To determine the maximum metabolic yield, the optimum dosage size, pH, temperature, salinity and cations were evaluated. The antibacterial activity of the samples against Gram-negative and Gram-positive isolates was assessed using the Kirby-Bauer Disk Diffusion Test. 28.3 nm was the average crystallite size of CuNPs revealed through XRD analysis. The SEM and TEM analysis depicted the CuNPs to be agglomerated in various sizes and forms. Elements such as Carbon (25.23 % wt), Cu (23.37 % Wt) and Oxygen (20.13 % Wt) were found in CuNPs. The nanoparticles had functional groups and a Cu–O bond at 559 cm −1. The CuNPs retained 70 % of its weight whereas the bioflocculant retained only 50 % when heated at a range of 100 °C–900 °C. The samples exhibited a UV–Vis spectra between 250 and 300 nm, at a range of 200–1400 nm. The flocculating effeciency of CuNPs was optimal at 0.2 mg/mL (92 %) and cation independent (92 %). pH 7 was the peak maximum as 98 % of the flocculating activity was obtained. The CuNPs were thermally stable than the bioflocculant as over 80 % of its flocculating activity was retained even at high temperatures (121 °C). The CuNPs were not affected by the increase in NaCl concentration with the highest NaCl concentration (35 g/L) having the highest flocculating activity of 90 %. CuNPs exhibited antimicrobial activity against both bacterial strains, with greater susceptibility observed in S. aureus as compared to the bioflocculant. Thus, CuNPs have a potential to be applied in wastewater treatment to replace traditional flocculants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信