Agroinfiltration-mediated transient assay for rapid evaluation of constructs in pigeonpea

Kalenahalli Yogendra, Harika Gadeela, Koppula Nithya Sree, Wricha Tyagi
{"title":"Agroinfiltration-mediated transient assay for rapid evaluation of constructs in pigeonpea","authors":"Kalenahalli Yogendra,&nbsp;Harika Gadeela,&nbsp;Koppula Nithya Sree,&nbsp;Wricha Tyagi","doi":"10.1016/j.biotno.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>The process of generating stable transformants is time-consuming, labor-intensive, and genotype-dependent. In contrast, transient gene expression techniques, such as agroinfiltration, offer a rapid assessment of gene function and expression. Agroinfiltration, widely employed for studying gene function, has been extensively applied in leaf tissues of <em>Nicotiana benthamiana</em> and various other plant species. Despite its broad utility in various plants, to our knowledge, no prior investigation has been reported in pigeonpea. In this study, we developed an agroinfiltration method for transiently expressing a green fluorescent protein (<em>mGFP5</em>) reporter gene in four pigeonpea genotypes using syringe infiltration at the seedling stage under greenhouse conditions. The expression of the reporter gene <em>mGFP5</em> was assessed at 72-, 96-, and 120 h post-infiltration (hpi). Additionally, we assessed the effect of morphogenic genes, specifically <em>growth-regulating factor 4</em> (<em>GRF4</em>) and <em>GRF-interacting factor 1</em> (<em>GIF1</em>), from both rice and pigeonpea on the expression of <em>mGFP5</em> in four pigeonpea genotypes. Our findings demonstrate that <em>OsGRF4-GIF1</em> led to enhanced <em>mGFP5</em> expression compared to <em>CcGRF4-GIF1</em> in four diverse pigeonpea genotypes. Fluorescence could be detected till 120 hpi. Furthermore, PCR, RT-PCR, and fluorescence quantification confirmed the presence and expression of <em>mGFP5</em> at 72 hpi. Our results highlight the efficacy of agroinfiltration in quickly evaluating candidate genes in four genetically diverse pigeonpea genotypes, thereby reducing the time required for the initial assessment of constructs suitable for diverse molecular biology analyses.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 117-125"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266590692500008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The process of generating stable transformants is time-consuming, labor-intensive, and genotype-dependent. In contrast, transient gene expression techniques, such as agroinfiltration, offer a rapid assessment of gene function and expression. Agroinfiltration, widely employed for studying gene function, has been extensively applied in leaf tissues of Nicotiana benthamiana and various other plant species. Despite its broad utility in various plants, to our knowledge, no prior investigation has been reported in pigeonpea. In this study, we developed an agroinfiltration method for transiently expressing a green fluorescent protein (mGFP5) reporter gene in four pigeonpea genotypes using syringe infiltration at the seedling stage under greenhouse conditions. The expression of the reporter gene mGFP5 was assessed at 72-, 96-, and 120 h post-infiltration (hpi). Additionally, we assessed the effect of morphogenic genes, specifically growth-regulating factor 4 (GRF4) and GRF-interacting factor 1 (GIF1), from both rice and pigeonpea on the expression of mGFP5 in four pigeonpea genotypes. Our findings demonstrate that OsGRF4-GIF1 led to enhanced mGFP5 expression compared to CcGRF4-GIF1 in four diverse pigeonpea genotypes. Fluorescence could be detected till 120 hpi. Furthermore, PCR, RT-PCR, and fluorescence quantification confirmed the presence and expression of mGFP5 at 72 hpi. Our results highlight the efficacy of agroinfiltration in quickly evaluating candidate genes in four genetically diverse pigeonpea genotypes, thereby reducing the time required for the initial assessment of constructs suitable for diverse molecular biology analyses.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信