Mohamed Shawky, Mohamed H. Kalaba, Gamal M. El-Sherbiny
{"title":"生物合成纳米银与亚胺培南联合处理耐碳青霉烯鲍曼不动杆菌及其毒力因子","authors":"Mohamed Shawky, Mohamed H. Kalaba, Gamal M. El-Sherbiny","doi":"10.1016/j.biotno.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Carbapenem-resistant <em>Acinetobacter baumannii</em> is an extremely hazardous microorganism due to its high level of resistance to a wide array of antibiotics, making it a significant public health concern. Herein, this study aimed to biofabricate silver nanoparticles using a cell-free filter derived from <em>Streptomyces</em> sp., with a focus on characterizing their physicochemical properties, and use them to combat CRAB and their virulence factors. The biofabricated Ag-NPs were predominantly spherical with an average size 50 nm, confirmed through TEM analyses, while DLS measurements showed an average hydrodynamic diameter of approximately 36.78 nm. UV–Vis spectroscopy displayed a characteristic surface plasmon resonance peak in the range of 420 nm, indicative of nanoparticle formation. XRD confirmed the crystalline structure, presenting peaks corresponding to face-centered cubic silver. FTIR spectroscopy revealed active participation of metabolite compounds derived from the <em>Streptom</em>yces cell-free filter in both reduction and stabilization processes. Eight clinical bacterial isolates were identified as CRAB using the Vitek-2 system, and biofilm formation with 100 % was assessed through Congo red and microplate assays. The MIC for Ag-NPs and imipenem (IMP) were found to be between 4 and 5 μg/mL and 13 and 15 μg/mL, respectively. Additionally, the fractional inhibitory concentration index (FICI) for the synergistic combinations of Ag-NPs and IMP ranged from 0.5 to 0.375, indicating a notable decrease in the MIC values for both IMP and Ag-NPs from 14 and 5 μg/mL to 1.75 and 1.25 μg/mL, respectively. The qRT-PCR demonstrated a significant reduction in the expression levels of the <em>Bap</em> and <em>ompA</em> genes by up to 4.0-fold (p ≤ 0.001). The time-killing assay confirmed that the bacterial strain was effectively eliminated through the synergistic action of Ag-NPs and IMP. Moreover, the cytotoxicity assessment of Ag-NPs and their combination with IMP revealed low toxicity of the combination of Ag-NPs and IMP, with an IC<sub>50</sub> of 26.13 ± 0.24 and 45.33 ± 0.21 μg/mL, respectively (p < 0.0019), indicating good biosafety, while the hemolysis rates were recorded at 0.4 and 0.7 at 12 and 24 h, respectively. We concluded that the combination of Ag-NPs with IMP could serve as a promising alternative strategy for treating CRAB.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 183-195"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tackling carbapenem-resistant Acinetobacter baumannii (CRAB) and their virulence factors using biosynthesized silver nanoparticles combined with imipenem\",\"authors\":\"Mohamed Shawky, Mohamed H. Kalaba, Gamal M. El-Sherbiny\",\"doi\":\"10.1016/j.biotno.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbapenem-resistant <em>Acinetobacter baumannii</em> is an extremely hazardous microorganism due to its high level of resistance to a wide array of antibiotics, making it a significant public health concern. Herein, this study aimed to biofabricate silver nanoparticles using a cell-free filter derived from <em>Streptomyces</em> sp., with a focus on characterizing their physicochemical properties, and use them to combat CRAB and their virulence factors. The biofabricated Ag-NPs were predominantly spherical with an average size 50 nm, confirmed through TEM analyses, while DLS measurements showed an average hydrodynamic diameter of approximately 36.78 nm. UV–Vis spectroscopy displayed a characteristic surface plasmon resonance peak in the range of 420 nm, indicative of nanoparticle formation. XRD confirmed the crystalline structure, presenting peaks corresponding to face-centered cubic silver. FTIR spectroscopy revealed active participation of metabolite compounds derived from the <em>Streptom</em>yces cell-free filter in both reduction and stabilization processes. Eight clinical bacterial isolates were identified as CRAB using the Vitek-2 system, and biofilm formation with 100 % was assessed through Congo red and microplate assays. The MIC for Ag-NPs and imipenem (IMP) were found to be between 4 and 5 μg/mL and 13 and 15 μg/mL, respectively. Additionally, the fractional inhibitory concentration index (FICI) for the synergistic combinations of Ag-NPs and IMP ranged from 0.5 to 0.375, indicating a notable decrease in the MIC values for both IMP and Ag-NPs from 14 and 5 μg/mL to 1.75 and 1.25 μg/mL, respectively. The qRT-PCR demonstrated a significant reduction in the expression levels of the <em>Bap</em> and <em>ompA</em> genes by up to 4.0-fold (p ≤ 0.001). The time-killing assay confirmed that the bacterial strain was effectively eliminated through the synergistic action of Ag-NPs and IMP. Moreover, the cytotoxicity assessment of Ag-NPs and their combination with IMP revealed low toxicity of the combination of Ag-NPs and IMP, with an IC<sub>50</sub> of 26.13 ± 0.24 and 45.33 ± 0.21 μg/mL, respectively (p < 0.0019), indicating good biosafety, while the hemolysis rates were recorded at 0.4 and 0.7 at 12 and 24 h, respectively. We concluded that the combination of Ag-NPs with IMP could serve as a promising alternative strategy for treating CRAB.</div></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"6 \",\"pages\":\"Pages 183-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906925000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906925000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tackling carbapenem-resistant Acinetobacter baumannii (CRAB) and their virulence factors using biosynthesized silver nanoparticles combined with imipenem
Carbapenem-resistant Acinetobacter baumannii is an extremely hazardous microorganism due to its high level of resistance to a wide array of antibiotics, making it a significant public health concern. Herein, this study aimed to biofabricate silver nanoparticles using a cell-free filter derived from Streptomyces sp., with a focus on characterizing their physicochemical properties, and use them to combat CRAB and their virulence factors. The biofabricated Ag-NPs were predominantly spherical with an average size 50 nm, confirmed through TEM analyses, while DLS measurements showed an average hydrodynamic diameter of approximately 36.78 nm. UV–Vis spectroscopy displayed a characteristic surface plasmon resonance peak in the range of 420 nm, indicative of nanoparticle formation. XRD confirmed the crystalline structure, presenting peaks corresponding to face-centered cubic silver. FTIR spectroscopy revealed active participation of metabolite compounds derived from the Streptomyces cell-free filter in both reduction and stabilization processes. Eight clinical bacterial isolates were identified as CRAB using the Vitek-2 system, and biofilm formation with 100 % was assessed through Congo red and microplate assays. The MIC for Ag-NPs and imipenem (IMP) were found to be between 4 and 5 μg/mL and 13 and 15 μg/mL, respectively. Additionally, the fractional inhibitory concentration index (FICI) for the synergistic combinations of Ag-NPs and IMP ranged from 0.5 to 0.375, indicating a notable decrease in the MIC values for both IMP and Ag-NPs from 14 and 5 μg/mL to 1.75 and 1.25 μg/mL, respectively. The qRT-PCR demonstrated a significant reduction in the expression levels of the Bap and ompA genes by up to 4.0-fold (p ≤ 0.001). The time-killing assay confirmed that the bacterial strain was effectively eliminated through the synergistic action of Ag-NPs and IMP. Moreover, the cytotoxicity assessment of Ag-NPs and their combination with IMP revealed low toxicity of the combination of Ag-NPs and IMP, with an IC50 of 26.13 ± 0.24 and 45.33 ± 0.21 μg/mL, respectively (p < 0.0019), indicating good biosafety, while the hemolysis rates were recorded at 0.4 and 0.7 at 12 and 24 h, respectively. We concluded that the combination of Ag-NPs with IMP could serve as a promising alternative strategy for treating CRAB.